Instrukcja Obsługi

Combi 400 Duo 400 Pulson 400 Vaco 400

C € 0344

Producent:	GymnaUniphy N.V.
Siedziba główna:	Pasweg 6A
	B-3740 BILZEN
Telefon:	(+32) (0)89-510.532
Fax:	(+32) (0)89-510.541
E-mail:	info@gymna.com
Strona internetowa:	www.gymna.com
Przedstawiciel firmy GymnaUniphy:	

Wszystkie prawa zastrzeżone. Zabrania się kopiowania całości lub dowolnego fragmentu publikacji, przechowywania w plikach, publikowania (elektronicznego, mechanicznego, dokonywania kserokopii, czy innych form) bez pisemnej zgodny GymnaUniphy N.V. A.

Wersja 2.0/Kwiecień 2018

SKRÓTY

Ogólne

- AQ Współczynnik akomodacji (Accomodation Quotient)
- CC Prąd stały (Constant Current)
- **CO** Terapia skojarzona (Combined therapy)
- **CP** Prąd CP (Courte Période)
- CV Stałe napięcie (Constant Voltage)
- DF Prąd DF (Diphasé Fixe)
- EL Elektroda
- EMC Kompatybilność elektromagnetyczna (Electromagnetic Compatibility)
- ESD Wyładowanie elektrostatyczne (Electrostatic Discharge)
- ET Elektroterapia
- HAC Szpitalny koncentrat antyseptyczny (Hospital Antiseptic Concentrate)
- LP Prąd LP (Longue Période)
- MF Średnia częstotliwość prądy jednokierunkowe i interferencyjne (Medium Frequency)
- MF Prąd MF (Monophasé Fixe)
- MTP Mięśniowo-powięziowy punkt spustowy (Myofascial Trigger Point)
- NMES Stymulacja nerwowo-mięśniowa (Neuro Muscular Electro Stimulation)
- TENS Przezskórna stymulacja nerwu (Transcutaneous Electrical Nerve Stimulation)
- US Ultradźwięki (Ultrasound)
- VAS Wizualna skala bólu (Visual Analogue Scale)
- Â, Î Oznacza wartość szczytową

Instrukcja obsługi seria 400

Urządzenia do elektroterapii, terapii ultradźwiękowej, laseroterapii i terapii skojarzonej ze zintegrowaną funkcją GTS ^{Q GTS}.

	Elektroterapia	Terapia	Terapia	Laseroterapia	Terapia
		ultradźwiękowa	skojarzona		podciśnieniowa
					Vacuum
					(opcjonalnie)
		シ	\ ^ ₩	-**	
Combi 400	х	х	х	x	х
Duo 400	х				х
Pulson 400		х			

Symbole na urządzeniu i akcesoriach

	Producent
SK YYYY-MM	Data produkcji i kraj pochodzenia (Słowacja)
C E 0344	Oznakowanie CE z numerem identyfikacyjnym Jednostki Notyfikowanej
SN	Numer seryjny
X	Nie wyrzucaj sprzętu elektrycznego do śmieci domowych!
\triangle	Uwaga!
★	Część aplikacyjna typu BF
	Odwołaj się do instrukcji obsługi!
	Klasa II
	Ziemia
	Uwaga! Wiązka światła
	Wskazuje aperturę lasera i kierunek wiązki
WEAR COOGLES	Konieczność noszenia okularów ochronnych

SYMBOLE NA SONDZIE LASEROWEJ

SYMBOLE W INSTRUKCJI OBSŁUGI

$\underline{\mathbb{V}}$	Ostrzeżenie lub ważna informacja.
₹	Tylko dla urządzeń do elektroterapii: Combi400, Duo400.
シ	Tylko dla urządzeń do terapii ultradźwiękowej: Combi400, Pulson400.
-**	Tylko dla urządzeń do laseroterapii: Combi400.
	Tylko dla urządzeń z możliwością terapii podciśnieniowej Vacuum:
	Combi400, Duo400
۲ *	Tylko dla urządzeń z możliwością terapii skojarzonej: ultradźwiękowej oraz elektroterapii:Combi400

Spis treści

1. BEZPIECZEŃSTWO	.9
1.1 OGÓLNE	9
1.2 INSTRUKCJA BEZPIECZEŃSTWA	13
1.3 PRZECIWWSKAZANIA	16
2. INSTALACJA	21
2.1 PRZED URUCHOMIENIEM APARATU	.21
2.2 PODŁĄCZENIE APARATU	21
2.3 UMIESZCZENIE URZĄDZENIA VACO 400 POD COMBI- LUB DUO 400	.22
2.4 WYKORZYSTANIE W POŁĄCZENIU Z INNYM URZĄDZENIEM	22
2.5 EKRAN DOTYKOWY	22
2.6 PRZEPROWADZENIE TESTU FUNKCJONALNOŚCI APARATU	22
2.7 PONOWNA SPRZEDAŻ	23
3. OPIS SPRZĘTU	25
3.1 OPIS APARATU COMBI 400 I AKCESORIÓW	25
3.2 OPIS APARATU DUO 400 I AKCESORIÓW	26
3.3 OPIS APARATU PULSON 400 I AKCESORIÓW	27
3.4 OPIS APARATU VACO 400 I AKCESORIÓW	28
3.5 CZĘŚCI SKŁADOWE SERII 400	29
3.6 WYŚWIETLACZ	30
3.7 KSZTAŁTY PRĄDU	38
3.8 KSZTAŁTY PRĄDU PRZY TERAPII SKOJARZONEJ	40
4. DZIAŁANIE	43
4.1 WYBÓR TERAPII	43
4.2 ZAPROGRAMOWANIE I ROZPOCZĘCIE ZABIEGU	46
4.3 ELEKTROTERAPIA	53
4.4 TERAPIA ULTRADŹWIĘKOWA	58
4.5 TERAPIA SKOJARZONA	50
4.6 LASEROTERAPIA6	52
4.7 BIBLIOTEKA ANATOMICZNA	64
4.8 PROGRAMY DIAGNOSTYCZNE	65

4.9 PAMIĘĆ	68
4.10 USTAWIENIA SPERSONALIZOWANE A USTAWIENIA SYSTEM	U73
4.11 TERAPIA PODCIŚNIENIOWA VACUUM	80
5. KONTROLA I KONSERWACJA	85
5.1 KONTROLA	85
5.2 KONSERWACJA	87
6. USTERKI, SERWIS I GWARANCJA	93
6.1 USTERKI	93
6.2 SERWIS	94
6.3 GWARANCJA	94
6.4 TECHNICZNA ŻYWOTNOŚĆ	95
7. INFORMACJE TECHNICZNE	97
7.1 OGÓLNE	
7.2 ELEKTROTERAPIA	
7.3 TERAPIA PODCIŚNIENIOWA VACUUM	103
7.4 TERAPIA ULTRADŹWIĘKOWA	103
7.5 LASEROTERAPIA	
7.6 WARUNKI OTOCZENIA	106
7.7 TRANSPORT I PRZECHOWYWANIE	106
7.8 AKCESORIA STANDARDOWE	106
7.9 AKCESORIA OPCJONALNE	
8. DODATEK	111
8.1 LEKI DO JONOFOREZ	111
8.2 DIAGNOSTYKA KRZYWA I/T	112
8.3 USTAWIENIA ELEKTRODY, GŁOWICY I SONDY LASEROWEJ	113
8.4 DYREKTYWA DOTYCZĄCA DOSTOSOWANIA	
ELEKTROMAGNETYCZNEGO	114
8.5 KONTROLA BEZPIECZEŃSTWA TECHNICZNEGO	118
8.6 UTYLIZACJA	126
9. WYJAŚNIENIA	127
9.1 LITERATURA	127
9.2 TERMINOLOGIA	

1. Bezpieczeństwo

1.1 Ogólne

1.1.1 Przeznaczenie

Urządzenia z serii 400 są przeznaczone wyłącznie do aplikacji medycznych. Pozwalają na wykonanie zabiegów z zakresu elektroterapii, terapii ultradźwiękowej, laseroterapii, a także terapii skojarzonej. Zamierzonymi użytkownikami aparatu są głownie fizjoterapeuci; asystenci fizjoterapeutów, studenci fizjoterapii, pielęgniarki i doktoranci posiadający odpowiednie kompetencje do korzystania z urządzenia.

Pacjenci, którzy mogą być poddani leczeniu, to głównie:

• Wszyscy pacjenci cierpiący na schorzenia neurologiczne i / lub mięśniowo-szkieletowe oraz posiadający zmiany skórne, w anatomicznych lokalizacjach określonych na liście wskazań.

- Wszyscy pacjenci z przewlekłym bólem o charakterze nieodwracalnym.
- Wszyscy pacjenci potrzebujący diagnozy bądź wymagający stymulacji mięśni.

Urządzenie zostało stworzone z myślą o użytku w ramach profesjonalnej opieki zdrowotnej w środowiskach takich jak obiekty sportowe, szpitale z wyłączeniem sal operacyjnych i gabinetów lekarskich w obszarach mieszkalnych.

1.1.2 Zasada działania

Ogólne

Produkt jest urządzeniem elektrycznym zasilanym z sieci o klasie ochronności II z uziemieniem funkcjonalnym. Jest to klasa ryzyka MDD IIa, a wszystkie zastosowane części są częściami aplikacyjnymi typu BF. Urządzenie posiada plastikową obudowę, która zawiera wszystkie moduły oprócz odłączanego elementu do terapii podciśnieniowej Vaco 400, na którym można ustawić jednostkę główną. Zastosowanie zasilacza 100-240 VAC we wszystkich zakresach pozwala uniknąć konieczności wyboru selektora napięcia, co więcej zasila on wszystkie pozostałe moduły dobrze regulowanym prądem stałym o niskim napięciu.

Moduł interfejsu użytkownika

Interfejs użytkownika składa się z pełnokolorowego graficznego wyświetlacza LCD TFT 10,4 "z ekranem dotykowym, na którym można znaleźć szereg przycisków, służących do obsługi urządzenia. Na dole znajdują się dwa obrotowe elementy do bezpośredniej kontroli prądów wyjściowych i / lub natężenia wiązki ultradźwiękowej w zależności od wybranego trybu pracy. Jest on napędzany przez mikrokomputer, który uruchamia zastrzeżone oprogramowanie dla urządzenia w systemie operacyjnym. Oprogramowanie może zostać zaktualizowane za pomocą karty pamięci podłączonej do złącza USB. Jednakże, należy to zrobić tylko i wyłącznie wtedy, gdy żaden pacjent nie jest w danym momencie poddawany leczeniu. Wyświetlacz LCD służy również do wyświetlania list wyboru, tekstów

Seria 400

objaśniających, zapisanych programów, danych pacjenta, takich jak krzywe S/D itp. Język systemu urządzenia może zostać wybrany przez użytkownika, podobnie jak wiele innych właściwości behawioralnych. W razie potrzeby wprowadzania danych, wyświetlana jest klawiatura odpowiednio skonfigurowana dla wybranego języka. Wszystkie szczegóły dotyczące interfejsu użytkownika znajdują się w sekcji § 4. Mikrokomputer tłumaczy ustawienia i polecenia użytkownika na komunikaty do modułów funkcyjnych, tak, aby wykonały wymagane zadanie z odpowiednimi parametrami. Następnie, otrzymuje informacje zwrotne od modułów na temat ich aktualnego statusu i możliwych konfliktów lub błędów. W stosownych przypadkach są one przetwarzane w celu wyświetlenia na ekranie. Korzystanie z modułów funkcyjnych z ich własnymi mikrokontrolerami jest konieczne, gdyż system operacyjny mikrokomputera dla interfejsu użytkownika nie jest w stanie zapewnić wymaganej dokładności pomiaru czasu.

Moduł do elektroterapii

Za pomocą mikrokontrolera i dwóch przetworników cyfrowo-analogowych generowane są dwa prądy, które są wzmacniane i podawane pacjentowi przez izolację. W przypadku tak zwanych prądów jednobiegunowych, nieprzekraczających poziomu zerowego, prąd zmienny jest najpierw prostowany. Amplituda, polaryzacja, szerokość impulsu, częstotliwość powtarzania impulsu i obwiednia mogą być regulowane w dozwolonych zakresach. Prądy mogą działać niezależnie lub zsynchronizowanie, aby uzyskać tak zwane prądy pola wektorowego przez interferencje. Korzystając z generatora jako źródła prądu, prąd stały ma tę zaletę, że impedancja w obwodzie pacjenta prawie nie ma wpływu na wielkość. Wykorzystanie go jako niedoskonałego źródła napięcia, ma tę zaletę, że podczas krótkich przerw w obwodzie pacjenta nie wystąpią skoki prądu z powodu np. ruchu głowicy ultradźwiękowej podczas przeprowadzania terapii skojarzonej. Pojęcie stałego napięcia jest jednak nieco mylące. Opadnie, gdy impedancja obciążenia obniży się, a prąd wzrośnie. Obwód jest zwymiarowany w taki sposób, że prąd wyjściowy w mA jest równy ustawionej wartości w woltach, gdy obciążenie osiągnie zero Ω. W przypadku wysokiego napięcia i mikroprądu użytkownik nie ma wyboru rodzaju źródła. Jak sugerują nazwy obecnych typów, zawsze jest to odpowiednio CV i CC. Jeden zacisk obwodu pacjenta A może zostać poprowadzony do powierzchni zabiegowej głowicy ultradźwiękowej, aby działał jak elektroda w terapii skojarzonej. Jest to zawsze biegun ujemny, aby zapobiec migracji jonów metali z powierzchni leczenia do ciała pacjenta. Oczywiście zawsze można skierować prąd przez tkankę, wystawiając go na działanie ultradźwięków. Pozwala to uniknąć problemów związanych z polaryzacją i kontaktami oraz ograniczenia dostępnych trybów prądu w terapii skojarzonej. Ciekawym wariantem jest wybranie jednego z 2-kanałowych trybów prądu interferencyjnego na kanale A i wybranie ultradźwięków dla kanału B. Głowicę ultradźwiękową można następnie wykorzystać do napromieniowania obszaru tkanki, w którym zakłócają się dwa prądy.

10

Moduł do terapii ultradźwiękowej

Mikroprocesor ustawia częstotliwość oscylatora i napięcie zasilania napędzanego przez niego stopnia mocy. Rzeczywiste wartości zależą od wymaganych parametrów operacyjnych i właściwości podłączonej głowicy ultradźwiękowej. Właściwości zbierane są z aktualnie podłączonej głowicy, dzięki czemu głowice można wymieniać między jednostkami. Wynikowe napięcie RF jest doprowadzane do wybranej głowicy (możliwe jest podłączenie dwóch głowic). Przetwornik piezo przekształca napięcie RF na fale ultradźwiękowe, które są wprowadzane do tkanki pacjenta przez powierzchnię leczenia. Do dobrego połączenia akustycznego potrzebna jest wystarczająca ilość żelu między powierzchnią a skórą. Gdy nie ma kontaktu lub kontakt jest znikomy, zostaje to automatycznie wykryte. Napięcie RF jest przełączane na modulację CW z bardzo niskim współczynnikiem cyklu pracy, aż do przywrócenia styku. Jest to konieczne, aby zapobiec przegrzaniu się powierzchni przez siłę ultradźwięków, które nie są absorbowane przez tkankę. Oprócz ciągłej modulacji ultradźwięków, możliwy jest wybór modulacji CW z kilkoma stosunkami cyklu pracy przy stałej częstotliwości 100 Hz. Chociaż możliwe jest podłączenie dwóch głowic ultradźwiękowych do urządzenia, tylko jedna z nich może być używana jednocześnie. Dzieje się tak, ponieważ dostępne są dwa rozmiary głowic, użytkownik natomiast, może wybrać odpowiedni rozmiar

Moduł do laseroterapii

Mikrokomputer interfejsu użytkownika obsługuje blokadę bezpieczeństwa do aktywacji funkcji lasera. Mikroprocesor doprowadza zasilanie do zacisków i sterowania złącza lasera tylko wtedy, gdy zostanie to poinstruowane przez oprogramowanie interfejsu użytkownika, a sonda laserowa jest podłączona. Po włączeniu sondy zaświeci się zielona lampka trybu gotowości, która aktywuje przycisk na sondzie. Naciśniecie go wyłączy lampkę stanu gotowości, a uruchomi żółtą lampkę aktywną. Jest to wykrywane przez mikrokontroler, który uruchamia się dwie sekundy później, wysyłając impulsy wyzwalające z wymaganą częstotliwością powtarzania do obwodu wyjściowego w sondzie laserowej. Osłona bezpieczeństwa, blokuje impulsy, gdy przycisk nie jest wciśnięty. Kondensator jest rozładowywany przez diodę (diody) laserową emitującą niewidzialną wiązkę lasera podczas impulsu. Następnie kondensator jest ładowany. Czas trwania impulsu laserowego zależy od właściwości diody laserowej, napięcia, do którego kondensator jest naładowany, i jego pojemności. Jest to ustawiane fabrycznie, więc wszystkie impulsy są zawsze takie same, a jedyną zmienną jest częstotliwość powtarzania. Ponieważ energia każdego impulsu jest identyczna, oprogramowanie interfejsu użytkownika może obliczyć całkowitą ilość energii z wybranej częstotliwości i czasu trwania leczenia. Dostępne są dwa modele głowic do obróbki laserowej, np. Sondy. Dane techniczne znajdują się odpowiednio w sekcji § 7.5. W przeciwieństwie do terapii ultradźwiękowych, możliwe jest podłączenie tylko jednej głowicy jednocześnie. Obok złącza

lasera znajduje się otwór, za którym znajduje się detektor światła. Można go wykorzystać do pomiaru energii impulsu emitowanego przez diodę laserową. Dla sondy Clusterprobe należy zmierzyć każdą diodę osobno i obliczyć sumę po przechwyceniu wszystkich czterech wartości. Ponieważ wiązki laserowe są bardzo rozbieżne, najważniejsze jest, aby utrzymywać sondę prostopadle do przedniej części jednostki głównej i pośrodku otworu. Zdalną blokadę można wstawić między złącze sondy laserowej a jej wtyczkę. Posiada ona w pełni izolowany obwód detekcji. Koniec kabla powinien być podłączony do przełącznika lub przełączników szeregowo na drzwiach gabinetu terapeutycznego. Przełącznik musi być otwarty, gdy drzwi są otwarte, i zamknięty, gdy drzwi są zamknięte. Gdy obwód detekcyjny jest otwarty, naciśnięty przycisk blokuje impulsy wyzwalające, a sonda laserowa jest dezaktywowana, interfejs użytkownika wie, że leczenie zostało przerwane. Gdy obwód detekcji jest zamknięty, sygnały są przekazywane i wszystko działa normalnie.

Moduł do terapii podciśnieniowej Vaco 400

Pojemnik na wodę wychwytuje kropelki wody zasysane przez powietrze przepływające przez zwilżone podkłady znajdujące się w przyssawkach. Prąd pacjenta przepływa przez przewód w wężach między słupkami wylotowymi a miseczkami. Poziom próżni, a po wybraniu pulsacji próżni, cykl roboczy i dodatkowa głębokość próżni są kontrolowane poprzez interfejs użytkownika głównego urządzenia, które również dostarcza napięcie zasilania prądem stałym. Po upływie czasu leczenia podciśnienie zostaje zredukowane do minimalnego poziomu lub całkowicie wyłączone, w zależności od ustawień systemu. Gdy tylko jeden kanał jest używany z próżnią, miseczki drugiego kanału muszą być ustawione na płaskiej powierzchni lub ich słupki wylotowe połączone ze sobą za pomocą węża. Przepustnice nie są używane, ponieważ mają tendencję do zapychania się brudem.

1.2 Instrukcja bezpieczeństwa

1.2.1 Ogólne

Aparat może być obsługiwany jedynie przez wykwalifikowany personel.

• Tylko autoryzowani pracownicy firmy GymnaUniphy N.V. są upoważnieni do otwierania urządzenia i jego akcesoriów.

• Podczas korzystania z urządzenia należy dokładnie przestrzegać wszystkich wskazówek zawartych w instrukcji obsługi.

• Aparat należy umieścić na poziomym i stabilnym stole.

• Otwory wentylacyjne na spodzie i tylnej ścianie aparatu nie mogą być zakryte.

• Nie wolno kłaść żadnych przedmiotów na aparacie.

• Nie wolno wystawiać aparatu na bezpośrednie działanie promieni słonecznych i innych źródeł ciepła.

Aparat należy chronić przed wilgocią.

• Nie wolno dopuścić, aby jakakolwiek ciecz dostała się do aparatu.

Aparatu nie należy dezynfekować ani sterylizować. Czyścić suchą lub zwilżoną ściereczką.

Patrz §5.2.1

• Pacjenci z implantami elektronicznymi (rozrusznik serca) mogą być poddani zabiegom po konsultacji z lekarzem.

• Aparat odpowiada założeniom Dyrektywy Komisji Europejskiej (93/42/EEG), dotyczącej sprzętu medycznego. Aparat wymaga corocznego przeglądu technicznego. Patrz §5.1.2

• W celu uzyskania optymalnych wyników leczenia, pacjent powinien zostać poddany badaniu, na podstawie którego ustala się plan terapii. Takie postępowanie zmniejsza ryzyko niepożądanych reakcji do minimum.

Instrukcję obsługi należy przechowywać w pobliżu aparatu.

1.2.2 Bezpieczeństwo elektryczne

• Aparat może być używany jedynie w pomieszczeniach, w których instalacja elektryczna jest wykonana zgodnie z ogólnie obowiązującymi normami.

• Aparat należy podłączyć do gniazda sieciowego z bolcem uziemiającym, zgodnym z ogólnymi przepisami p/pożarowymi dla pomieszczeń medycznych.

Aparatu nie wolno używać w pomieszczeniach, w których obecne są łatwopalne gazy i/lub opary.

Aparat należy wyłączyć jeśli nie jest używany.

.2.4 Dostosowanie elektro-magnetyczne

Elektryczny sprzęt medyczny wymaga szczególnej ostrożności w aspekcie dopasowania elektryczno-magnetycznego (EMC). Należy postępować zgodnie z instrukcją dotyczącą instalacji aparatu. Patrz §2.

W pobliżu aparatu nie należy używać telefonów komórkowych, urządzeń radiowych, krótkofalowych lub mikrofalowych. Wyżej wymienione urządzenia mogą zakłócać pracę aparatu.

Należy używać jedynie oryginalnych akcesoriów, dostarczanych przez firmę GymnaUniphy. Patrz §7.8 oraz 7.9. Inne akcesoria mogą zakłócić pracę aparatu.

1.2.5 Elektroterapia

- Nie wolno używać równocześnie aparatu wraz z chirurgicznymi aparatami wysokoczęstotliwościowymi, gdyż może to spowodować poparzenia pod elektrodami.
- Nie wolno używać elektrod samoprzylepnych w przypadku stosowania prądów mających dużą komponentę galwaniczną, takich jak: prąd stały, prąd diadynamiczny, prostokątny prąd średniej częstotliwości, pulsujący prądy prostokątny i trójkątny.
- Zastosowanie elektrod w pobliżu klatki piersiowej może zwiększyć ryzyko wystąpienia migotania serca.
- Przynajmniej raz w miesiącu należy sprawdzić stan izolacji kabli elektrod oraz stan samych elektrod. Patrz §5.1.
- Przynajmniej raz w tygodniu należy sprawdzić przewodność elektrod. Patrz § 4.10.5.
- Standardy bezpieczeństwa dla elektroterapii nie pozwalają zwiększać natężenia prądu powyżej 2 mArms/cm2. Jednakże w zabiegach jonoforezy nie wolno zwiększać natężenia prądu powyżej 0,2 mA/cm2. przekroczenie tych wartości powoduje wzrost zagrożenia poparzenia skóry pacjenta podczas zabiegu.
- Do jonoforez należy stosować sterylną gazę.

1.2.6 Terapia ultradźwiękowa 뾛

Podczas wykonywania zabiegu należy przemieszczać głowicę ultradźwiękową po skórze by uniknąć poparzeń wewnętrznych.

- Głowice ultradźwiękowe są wymienne. Aparat rozpoznaje głowice utrzymując zaprogramowane parametry.
- Głowicę ultradźwiękową należy dotykać bardzo ostrożnie. Zbyt silny kontakt z głowicą może zmienić jej charakterystykę. Jeśli głowica upadnie lub zostanie uderzona należy ją przetestować. Zobacz §5.1.1.

Przynajmniej raz w miesiącu należy sprawdzić głowicę ultradźwiękową. Podczas sprawdzania należy szukać wgłębień, pęknięć lub innych uszkodzeń, które mogłyby spowodować przedostanie się cieczy. Należy sprawdzić szczelność izolacji kabla. Zalecane jest sprawdzenie czy wszystkie mocowane elementy są stabilne. W przypadku uszkodzenia głowicy ultradźwiękowej, kabla bądź łącznika, należy je niezwłocznie wymienić. Patrz §5.1.

Wykonywanie zabiegów ultradźwiękowych pod wodą nie jest zalecane ze względu na możliwe niebezpieczeństwo odbicia ultradźwięków na ręce terapeuty.

1.2.7 Laseroterapia 米

Laser jest produktem klasy 3B i posiada niewidoczną wiązkę.

- Upewnij się, że znak ostrzegający o wiązce lasera jest dobrze widoczny przed wejściem do sali terapeutycznej.
- Promieniowanie lasera może powodować efekt fizjologiczny.
- Używaj laseroterapii wyłącznie do celów terapeutycznych.
- Korzystanie z elementów sterujących lub wykonywanie procedur innych niż określone w niniejszej instrukcji może spowodować narażenie na ryzyko promieniowania.
- Rozpocznij zabieg laseroterapii tylko i wyłącznie wtedy kiedy wszystkie osoby w pomieszczeniu mają założone okulary ochronne. Zignorowanie ostrzeżenia, może spowodować poważne uszkodzenie oczu, a w konsekwencji nawet ślepotę. Używaj okularów o następujących parametrach: 880-1080 I LB2 i umożliwiających wyraźny widok sterowania, wyświetlacza i lampek sygnalizacyjnych. Patrz §7.5.
- Nie patrz bezpośrednio na wiązkę lasera podczas zabiegu.
- Nie kieruj wiązki laserowej w stronę oczu.
- Nie używaj lasera w pobliżu łatwopalnych materiałów lub cieczy.
- Nie używaj sprzętu, jeśli widoczne są jakiekolwiek uszkodzenia.

- Regularnie sprawdzaj moc wyjściową sondy laserowej za pomocą urządzenia testowego.
 Patrz §4.10.8.
- Sprawdzaj sondę laserową przynajmniej raz w miesiącu. Podczas kontroli zwróć uwagę na obecność jakichkolwiek wgnieceń, pęknięć i innych uszkodzeń. Sprawdź, czy izolacja kabla jest nadal nienaruszona. Sprawdź, czy wszystkie bolce są obecne w złączach. Wymień sondę laserową, jeśli laser, kabel lub złącze są uszkodzone. Patrz § 5.1.
- Umieść sondę laserową na uchwycie, gdy laser nie jest używany.
- Wyjmij klucz blokady laserowej, gdy nie przeprowadzasz terapii.

1.3 Przeciwwskazania

Pacjentów z wymienionymi schorzeniami nie należy poddawać leczeniu:

1.3.1 Elektroterapia

Przeciwwskazania ogólne

Wysoka gorączka Zaburzenia sercowo-naczyniowe Problemy psychologiczne Rak z przerzutami Gruźlica uogólniona

Specyficzne przeciwwskazania bezwzględne

Rozrusznik na żądanie

Przeciwwskazania względne dla impulsów monofazowych

- Uszkodzenia skóry Infekcje skórne Zakrzepica, zakrzepowe zapalenie żył
- Chrząstka nasadowa (u dzieci)

Żylaki Ryzyko krwotoku Powierzchowne implanty Choroby serca, zaburzenia rytmu Epilepsja Zmniejszenie wrażliwości czuciowej Lokalizacja elektrod w okolicy zatoki tętnicy szyjnej Miesiączka Ciąża (nie w pobliżu płodu)

Przeciwwskazania względne dla impulsów bifazowych

Infekcje skórne Zakrzepica, zakrzepowe zapalenie żył Chrząstka nasadowa (u dzieci) Ryzyko krwotoku Choroby serca, zaburzenia rytmu Padaczka Zmniejszenie wrażliwości czuciowej Lokalizacja elektrod w okolicy zatoki tętnicy szyjnej Ciąża (nie w pobliżu płodu)

1.3.2 Terapia ultradźwiękowa

Przeciwwskazania ogólne Wysoka gorączka Zaburzenia sercowo-naczyniowe Rozrusznik serca Problemy psychologiczne Rak z przerzutami Gruźlica uogólniona Ciąża

Przeciwwskazania względne dla ultradźwięków o fali ciągłej

Infekcje Ostre stany zapalne Zakrzepica, zakrzepowe zapalenie żył Żylaki Ryzyko krwotoku Rozrusznik na żądanie Chrząstka nasadowa (dzieci) Zmniejszenie wrażliwości czuciowej Miesiączka Cement utrzymujący endoprotezy Cukrzyca

1.3.3 Terapia skojarzona

Patrz przeciwwskazania dla terapii ultradźwiękowej i elektroterapii.

1.3.4 Laseroterapia

Przeciwwskazania ogólne

Wysoka gorączka Zaburzenia sercowo-naczyniowe Problemy psychologiczne Rak z przerzutami Gruźlica uogólniona **Przeciwwskazania względne** Tarczyca Krwawienie tkanek i zwiększone ryzyko krwotoku Blizny przerostowe Ciąża

Fotoalergia

1.3.5 Przeciwwskazania względne dla terapii podciśnieniowej Vacuum

Patrz przeciwwskazania dla elektroterapii

Infekcje wewnętrzne

Ryzyko krwotoku w części ciała, w której mają zostać umieszczone elektrody.

1.3.6 Zgodność z Dyrektywą

Aparaty serii 400 odpowiadają założeniom dyrektywy Komisji Europejskiej (93/42/EEG), dotyczącej sprzętu medycznego, Dyrektywie 2011/65/UE dotyczącej ograniczenia stosowania niektórych niebezpiecznych substancji w sprzęcie elektrycznym i elektronicznym (RoHS2) oraz dyrektywie 2002/96 dotyczącej zużytego sprzętu elektrycznego i elektronicznego (WEEE). Urządzenie nie zawiera tkanek ludzkich ani zwierzęcych, żadnych substancji medycznych, krwi ani produktów krwiopochodnych pochodzenia ludzkiego lub zwierzęcego.

1.3.7 Odpowiedzialność

Ani wytwórca, ani sprzedawca nie ponoszą odpowiedzialności za konsekwencje, na które naraził się użytkownik, pacjent lub osoby trzecie, wynikłe na przykład z:

- nieprawidłowej diagnozy,

- niewłaściwego wykorzystania aparatu lub jego akcesoriów,

- złej interpretacji lub nieprzestrzegania instrukcji obsługi,

 - niewłaściwego użytkowania aparatu i przeprowadzania wszelkich napraw przez osoby nieposiadające uprawnień nadanych przez GymnaUniphy.

Ani wytwórca, ani sprzedawca nie ponoszą odpowiedzialności w przypadku przeniesienia infekcji przez akcesoria.

Seria 400

2. Instalacja

2.1 Przed uruchomieniem aparatu

- Po wyjęciu z opakowania należy sprawdzić, czy aparat nie został uszkodzony podczas transportu.
- 2. Należy sprawdzić czy wszystkie akcesoria są kompletne i nieuszkodzone. Patrz §7.8.
- W przypadku jakichkolwiek nieprawidłowości, należy skontaktować się z dostawcą telefonicznie, faxem, e-mailem lub listownie w ciągu 3 dni roboczych od dostawy.
- Nie wolno używać sprzętu, który jest wadliwy lub uszkodzony.

2.2 Podłączenie aparatu

1) Aparat należy umieścić na poziomym i stabilnym podłożu.

- Otwory wentylacyjne na spodzie i tylnej ścianie aparatu nie mogą być zakryte.
- Nie wolno wystawiać aparatu na bezpośrednie działanie promieni słonecznych i innych źródeł ciepła.
- Aparat należy chronić przed wilgocią.

2) Przed podłączeniem wtyczki do gniazdka ściennego należy dokładnie sprawdzić, czy napięcie zasilania, które jest pokazane na tylnej części aparatu odpowiada napięciu panującemu w sieci. Aparat jest dostosowany do napięcia zasilania od 100 V do 240 VAC/50-60 Hz.

3) Aparat należy podłączyć do gniazdka ściennego z bolcem uziemiającym.

2.3 Umieszczenie urządzenia VACO 400 pod COMBI- lub DUO 400

Urządzenie Vaco 400 zostało zaprojektowane do umieszczenia pod urządzeniem z serii 400. Patrz

§ 3.5.

Procedura

- 1. Podłącz kabel połączeniowy 5-pin (12).
- 2. Podłącz kabel połączeniowy 6-pin (11).

W połączeniu z Combi400 zamontuj uchwyt głowicy ultradźwiękowej pod Vaco400 zamiast Combi400.

3. Podczas korzystania z Gymna mobile 400 patrz § 7.9.5.

2.4 Wykorzystanie w połączeniu z innym urządzeniem

Urządzenie Vaco400 może być używane w połączeniu z:

- The Combi400
- The Duo400

2.5 Ekran dotykowy

Seria 400 posiada ekran dotykowy. Z wyjątkiem pokręteł natężenia wszystkie ustawienia i możliwości leczenia można wybrać, dotykając palcem odpowiedniej opcji.

Procedura

1. . Jeśli ekran dotykowy nie reaguje poprawnie, przeprowadź kalibrację.

Patrz § 4.10.3.

2.6 Przeprowadzenie testu funkcjonalności aparatu

Przy pierwszym uruchomieniu urządzenia automatycznie otworzy się kreator konfiguracji. Patrz § 4.10.

Procedura

1. Włącz urządzenie za pomocą przełącznika z tyłu urządzenia. Gdy urządzenie jest włączone,

automatycznie rozpocznie wykonywanie testu.

2. Jeśli wyświetlacz nie świeci się, zapoznaj się z informacjami w sekcji § 6.1.1.

3. W razie potrzeby zmień język urządzenia. Patrz § 4.10.3.

2.7 Ponowna sprzedaż

Pojawienie się nowego właściciela aparatu musi być monitorowane. Aparat, głowice ultradźwiękowe oraz inne akcesoria posiadają jednostkowe numery seryjne. Należy powiadomić przedstawiciela regionalnego o odsprzedaży i podać adres i dane nowego właściciela.

Seria 400

3. Opis sprzętu

3.1 Opis aparatu Combi 400 i akcesoriów

- 1 Combi 400. Patrz § 3.5.
- 2 Długopis do ekranów dotykowych
- 3 Instrukcja obsługi na płycie CD
- 4 Instrukcja bezpieczeństwa
- 5 Przewód zasilający
- 6 Żel kontaktowy
- 7 Złącze testowe
- 8 Głowica ultradźwiękowa
- 9 Wizualna Skala Bólu

- 10 Taśmy mocujące (4 sztuki)
- 11 Podkłady pod elektrody (4 sztuki)
- 12 Uchwyt głowicy ultradźwiękowej
- 13 Elektrody (4 sztuki)
- 14 Kable elektrod (2 sztuki)
- 15 Skrócony przewodnik
- 16 Przycisk obrotowy, srebrny. Patrz § 7.8.1.

3.2 Opis aparatu Duo 400 i akcesoriów

- 1 Duo 400.
- 2 Długopis do ekranów dotykowych
- 3 Instrukcja obsługi na płycie CD
- 4 Instrukcja bezpieczeństwa
- 5 Przewód zasilający
- 6 Złącze testowe
- 7 Wizualna Skala Bólu

- 8 Taśmy mocujące (4 sztuki)
- 9 Podkłady pod elektrody (4 sztuki)
- 10 Elektrody (4 sztuki)
- 11 Kable elektrod (2 sztuki)
- 12 Skrócony przewodnik
- 13 Przycisk obrotowy, srebrny. Patrz § 7.8.1.

3.3 Opis aparatu Pulson 400 i akcesoriów

- 1 Pulson 400.
- 2 Długopis do ekranów dotykowych
- 3 Instrukcja obsługi na płycie CD
- 4 Instrukcja bezpieczeństwa
- 5 Przewód zasilający
- 6 Żel kontaktowy

- 7 Głowica ultradźwiękowa (mała z uchwytem)
- 8 Głowica ultradźwiękowa (duża z uchwytem)
- 9 Podwójny uchwyt do głowicy ultradźwiękowej
- 10 Skrócony przewodnik
- 11 Przycisk obrotowy, srebrny. Patrz § 7.8.1.

Seria 400

3.4 Opis aparatu Vaco 400 i akcesoriów

- 1 Vaco 400.
- 2 Wąż próżniowy (4 sztuki)
- 3 Kabel łączący i zasilający (6-pin)
- Kabel łączący dla elektroterapii (5-pin)

- 5 Podkłady pod elektrody (4 sztuki)
- 6 Elektrody próżniowe (4 sztuki)
- 7 Instrukcja obsługi na płycie CD

Wszystkie ustawienia i regulacje modułu Vacuum można wykonać na ekranie dotykowym głównego urządzenia. Patrz § 4.11.

3.5 Części składowe serii 400

- 1. Wyświetlacz. Patrz §3.6
- 2. Intensywność kanału A
- 3. Intensywność kanału B
- 4. Gniazdo głowicy ultradźwiękowej
- 5. Elektroda próżniowa, kanał B
- 6. Gniazdo kanału B (elektroterapia)
- 7. Gniazdo kanału A (elektroterapia)
- 8. Elektroda próżniowa, kanał A
- 9. Laser test eye
- 10. Gniazdo sondy laserowej
- 11. Jednostka Vaco 400 (opcjonalnie)
- 12. Kabel łączący i zasilający jednostkę główną z jednostką Vaco 400
- 13. Kabel do elektroterapii łączący jednostkę główną z jednostką Vaco 400
- 14. Wąż spustowy
- 15. Podłączenie do zasilania głównego
- 16. Włącznik/wyłącznik
- 17. Wentylator
- 18. Głośnik

3.6 Wyświetlacz

3.6.1 Menu główne

- 1 Okno główne. Patrz § 3.6.3.
- 2 Obszar nawigacji / pozycje menu ekranowego.
- 3 Wybór metody terapii bezpośredniej Patrz § 3.6.2
- 4 Okno wyjściowe kanał A: lewa strona (wybrany kanał ma ciemną ramkę).
- 5 Okno wyjściowe kanał B: prawa strona (kanał, który nie jest aktualnie wybrany jest jasnoniebieski)
- 6 Okna wyjściowe są kontrolkami. Stuknij na środku okna wyjściowego, aby wybrać dany kanał.

3.6.2 Bezpośredni wybór metody terapii

Każdy przycisk metody terapii ma swoje własne, stałe ustawienia kolorów, aby podkreślić graficzny interfejs użytkownika. Możliwe jest wybieranie pomiędzy ikonami terapii "w pełnym kolorze" lub ikonami terapii "z kolorową linią", aby nadać interfejsowi użytkownika spersonalizowany charakter. Dostosowywanie można wykonać za pomocą menu *ustawień systemu* lub kreatora konfiguracji. Patrz § 4.10.

Ikony terapii "w pełnym kolorze"

1 Tryby nieaktywne.

Przyciski mają wysoki gradient przezroczystości.

3 Tryby aktywne.

2 Wybrane tryby. Przyciski mają granatowy odcień.

Ikony terapii " z kolorową linią"

disabled	modes	enabled	modes	selected	modes
N.	N/H	*	Y.	*	Y.
Electro	Iontophoresis	Electro	Iontophoresis	Electro	Iontophoresis
Ľ	2	ど	2	シ	2
Ultrasound	Phonophoresis	Ultrasound	Phonophoresis	Ultrasound	Phonophoresi
۷.		۷.	*	٧.	-**
Combination	Laser	Combination	Laser	Combination	Laser

1 Tryby nieaktywne.

Przyciski mają wysoki gradient przezroczystości.

3 Tryby aktywne.

2 Wybrane tryby. Przyciski mają granatowy odcień.

Tryby przycisków terapii:	
Tryby aktywne	Możliwy jest wybór danej terapii.
Tryby nieaktywne:	Zastosowanie tej metody terapii nie jest obecnie możliwe. Przyciski mają wysoki gradient przezroczystości.
Tryby wybrane:	Dana metoda terapii została wybrana. Przycisk ma granatowy odcień.

3.6.3 Przyciski ekranu głównego

- 1 Przycisk Home
- Nazwa aktualnie wybranego ekranu (zmienna treść)
- 3 Przycisk Ustawień Vacuum (Patrz § 4.11)
- 4 Przycisk Biblioteki anatomicznej (Patrz § 4.7)
- 5 Przycisk Przeciwwskazań (Patrz § 1.3)
- 6 Przycisk Ustawień systemu (Patrz § 4.10.2)
- 7 Przycisk Powrotu

Informacje dodatkowe

1 Przycisk Home i przycisk Powrotu

ñ	Przycisk Home jest aktywny
谷	Przycisk Home jest nieaktywny

\leftarrow	Przycisk Powrotu jest aktywny
\leftarrow	Przycisk Powrotu jest nieaktywny

2. Nazwa aktualnie wybranego ekranu: Zmienne pole tekstowe "Ustawienia Vacuum" działa jako skracacz linków.

Przycisk Vacuum : Widoczny, wyłącznie jeśli urządzenie Vaco jest podłączone do jednostki głównej.

*	Aktywny
*	Wybrany

3. Biblioteka anatomiczna

Aktywny
Wybrany

4. Przeciwwskazania

CI	Aktywny
CI	Wybrany

5. Ustawienia systemu

۵	Aktywny
0	Wybrany

3.6.4 Wyświetlanie parametrów terapii

Poniższy ekran pokazuję wybraną opcję elektroterapii na kanale A i ultradźwięki na kanale B. Zanotuj tytuł ekranu wybranej terapii w nagłówku ekranu. Patrz § 3.6.3.

- 1Pole parametrów wybranej terapii7 Podwójny komunikat dla kanału A (porady i ostrzeżenia)2Wybrany parametr za pomocą przycisku góra/dół8 Przegląd terapii na kanale B, kanał niewybrany (w tym
przypadku terapii ultradźwiękowej)3Aktualny rysunek (lub terapia) Patrz § 3.7 i § 3.8.9 Podwójny komunikat dla kanału B (porady i ostrzeżenia)4Rysunek z przewodnikiem w celu wsparcia i
dostosowania ustawień10 Przycisk Stop (przycisk w kolorze czerwonym): pojawia
się tylko wtedy, gdy terapia działa na określonym5Przyciski funkcjonalne stosowanej terapii.
Patrz § 3.6.5kanale, z wyjątkiem laseroterapii
- 6 Przegląd terapii wybranego kanału A (w tym przypadku Elektroterapii)

Ē	
¥	¥
i	i
?	?
Niebieskie przyciski są w trybie aktywnym	Przyciski o odwróconych barwach są w trybie wybranym

3.6.5 Przyciski funkcjonalne dla aplikowanych prądów

- 1. Zapisz protokół leczenia w pamięci (patrz § 4.9)
- 2. Zdjęcia rozmieszczenia dla elektro, ultradźwięków, lasera (patrz § 4.2.6)
- 3. Przycisk informacji o terapii (patrz § 4.2.6)
- 4. Pomoc techniczna (dotycząca terapii lub wybranego parametru) (patrz § 4.2.6)

Uwaga:

Klawisze funkcyjne są niewidoczne, gdy odpowiednia funkcja jest nieaktywna w danym momencie.

3.6.6 Symbole terapii w oknie danych wyjściowych

۲	Elektroterapia		*	Laseroterapia
IJ	Terapia ultradźwiękowa		А	Kanał A
	Terania skojarzona			
۲. س		В	В	Kanał B
	Ionoforeza			
Y	Sonoroicea			Czas zabiegu
	Fonoforeza		G	
11111	10110101020		5	
trut				

3.6.7 Symbole parametrów

Elektroterapia

*	Polaryzacja: czerwony +, bez modułu Vacuum	Ŀ	Symetryczny impuls bifazowy
<u> </u>	Polaryzacja: czerwony -, bez modułu Vacuum	₽	Asymetryczny impuls bifazowy
A	Polaryzacja zmienna, bez modułu Vacuum	CC	Stały prąd
O€	Polaryzacja: czerwony +, z modułem Vacuum	CV	Stałe napięcie
⊕ Ω	Polaryzacja: czerwony -, z modułem Vacuum	mA ^	Wartość szczytowa natężenia prądu
œ.	Polaryzacja zmienna, z modułem Vacuum	v^	Wartość szczytowa napięcie
¥	Używaj wyłącznie: polaryzacja: czerwony + dla terapii skojarzonej		
€	Używaj wyłącznie: polaryzacja: czerwony + modułu Vacuum, dla terapii skojarzonej		

Tryb zmiany częstotliwości

	12s/12s	55 1 1	1s/5s - 1s/5s
~ ⁶ ~6	6s/6s	¹_ſ 1	1s/1s
Terapia ultradźwiękowa

<u>10%</u> €10ms≯	Ultradźwięki - współczynnik wypełnienia 10%		Głowica, ERA 1 cm ²
10ms→	Ultradźwięki - współczynnik wypełnienia 20%	$\Box \!$	Głowica, ERA 4 cm ²
<u></u> 30% €10ms≯	Ultradźwięki - współczynnik wypełnienia 30%	\widehat{I}_{set}	Ustawiona wartość natężenia ultradźwięków
10ms≯	Ultradźwięki - współczynnik wypełnienia 40%	W /cm ²	Gęstość mocy ultradźwięków
50% €10ms→	Ultradźwięki - współczynnik wypełnienia 50%	Ppk	Wartość szczytowa mocy ultradźwięków
100%	Ultradźwięki - współczynnik wypełnienia 100%	W	Jednostka szczytowej mocy wyjściowej głowicy

Laseroterapia

Pav	Ustawiona średnia moc	Etot	Całkowita administrowana energia
*	Wykryto emisję lasera	Eset	Zalecana wartość energii podawanej pacjentowi
\square	Monoprobe		Clusterprobe

3.7 Kształtu prądu

Prądy jednokierunkowe

Prąd stały, jonofereza
Prąd stały
Impulsowy prąd prostokątny
Prąd 2-5 (UltraReiz)
Impulsowy prąd trójkątny
MF stały
Jonofereza MF stały

Prądy diadynamiczne

DF
MF
RS
СР
LP

Prądy interferencyjne

	Dwubiegunowy MF
4- pole (),	Izopolarne pole wektorowe
4 pole	Dipolowe pole wektorowe
4-pole	Klasyczna interferencja

Prądy TENS

	TENS konwencjonalny/ wysoka częstotliwość
	TENS niska częstotliwość
	TENS uderzeniowy
╶╢╢╌╢┝╢╢╢╢╢╢╎╢╎╴╢╎╴╢╎╎╢╎╴╢╎╴╢╎╴╢	TENS zmienna częstotliwość

Prądy NMES

	Prostokątny przebieg prądowy	
	Prostokątny przebieg prądowy	
-411120	Przebieg prądowy bifazowy	
	Wzrost interwału impulsów	
	Dwubiegunowy MF	
	Izopolarne pole wektorowe	
	Prądy Kotza	
Stymulacja przeciwbólowa Han Stim.		

Mikroprądy

Mikroprąd
Mikroprąd- skoki
Mikroprąd - modulowany

Prądy o wysokim napięciu

Wysokie napięcie
Wysokie napięcie- skok

3.8 Kształty prądu przy terapii skojarzonej

Prądy jednokierunkowe w połączeniu z ultradźwiękami

•	UD + Impulsowy prąd prostokątny
	UD + Prąd 2-5 (UltraReiz)
1	UD + Impulsowy prąd trójkątny
11111111111111111111111111111111111111	UD + MF stały

Prądy diadynamiczne w połączeniu z ultradźwiękami

 UD + DF
UD + MF
UD + RS
UD + CP
UD + LP

Prądy TENS w	połączeniu z	ultradźwiękami
--------------	--------------	----------------

.,		
	2/1	UD + TENS konwencjonalny/
	2	UD +TENS wysoka częstotliwość
·····	ッ	UD + TENS niska częstotliwość
	• <i>J</i>]	UD + TENS uderzeniowy
	9	
┚┟╏╾╏┍┚┟┚┟┚┟┚╏┙╏┨┍┚┟┚┟┚┟	シ	UD + TENS zmienna częstotliwość
1		

Prądy średniej częstotliwości w połączeniu z ultradźwiękami

	UD + Dwubiegunowy MF
************************************	UD + Prądy Kotza

Mikroprądy w połączeniu z ultradźwiękami

J))-~	ピ	UD + Mikroprądy modulowany

Prądy o wysokim napięciu w połączeniu z ultradźwiękami

	UD + Prądy o wysokim napięciu
--	-------------------------------

Seria 400

4. Działanie

4.1 Wybór terapii

Istnieje możliwość wyboru zabiegu na wiele sposobów: za pomocą pozycji w menu lub bezpośrednich

przycisków terapii. Początkowo, wybór dokonywany jest automatycznie dla lewego kanału A.

Okna wyjściowe są również kontrolkami.

Stuknij w środku okna wyjściowego B, aby wybrać inny kanał.

(aktualnie wybrany kanał ma okno wyjściowe z ramką lub ciemnoniebieskim tłem).

- Cele terapii (Objectives): Wybór terapii na podstawie efektów, które użytkownik chce osiągnąć. Patrz §4.1.2.
- Lista wskazań (Indication list): Wybór terapii na podstawie wskazań medycznych. Patrz §4.1.3.
- Obszar ciała (Body area): Wybór terapii na podstawie obszaru ciała. Patrz § 4.1.4.
- Efekty komórkowe (Cellular effects): Dostęp do zaprogramowanej listy w celu osiągnięcia terapeutycznego celu efektów komórkowych. Patrz § 4.1.5.
- Programy diagnostyczne (Diagnostic programs): Przeprowadzenie testu diagnostycznego, np. określenie reobazy i chronaksji. Zobacz §4.1.6.
- Pamięć (Memory): Wybór zapisanych terapii. Patrz §4.1.7.

4.1.1 Wybór terapii poprzez przyciski terapii

Powoduje otwarcie listy menu, w którym można dokonać żądanego wyboru, bądź też natychmiast otwiera wstępnie zaprogramowane ustawienia terapii.

Przycisk	Terapia	Przycisk	Terapia
Y	Elektroterapia	Y	Jonoforeza
劉	Terapia ultradźwiękowa	2	Fonoforeza
۲ .	Terapia skojarzona	-**	Laseroterapia

4.1.2 Wybór terapii poprzez cele terapii

Procedura

- 1. Wybierz cele terapii (Objectives) w Menu głównym.
- 2. Wybierz cel terapii.
- 3. Wybierz odpowiednią metodę terapii.
- Wybierz pożądany zabieg stosując się do opcji widocznych na ekranie.

4.1.3 Wybór terapii poprzez listę wskazań

- 1. Wybierz listę wskazań (Indications) w Menu głównym.
- 2. Wybierz odpowiednie wskazanie do terapii:
- Za pomocą klawiatury ekranowej wpisz pierwszą literę pożądanej terapii.
- Użyj paska przewijania po prawej stronie ekranu.
- 3. Wybierz odpowiednią metodę terapii.
- 4. Wybierz pożądany zabieg stosując się do opcji widocznych na ekranie.

4.1.4 Wybór terapii poprzez obszar ciała

Procedura

- Wybierz obszar ciała (Body area) w Menu głównym.
- 2. Wybierz pożądany obszar.
- 3. Wybierz wskazanie.
- Wybierz pożądany zabieg stosując się do opcji widocznych na ekranie.

4.1.5 Efekty komórkowe

Procedura

 Wybierz efekty komórkowe, jeśli stan patologiczny pacjenta jest wciąż uleczalny.

Informacja:

Fizyczne efekty mikroprądu są na poziomie komórkowym, tym samym, wywołując wszelkiego rodzaju reakcje chemiczne w celu przywrócenia normalnej funkcji komórki.

 Informacje widoczne na ekranie naprowadzą użytkownika na najbardziej optymalny protokół.

4.1.6 Wybór programu diagnostycznego

Za pomocą programów diagnostycznych możesz zbadać stan wrażliwości elektrycznej układu nerwowo-

mięśniowego.

Procedura

- Wybierz programy diagnostyczne w Menu głównym
 - 2. Wybierz pożądany program

diagnostyczny Patrz §4.8.

*	Diagnostics		-	Ê	۰	
Rheobas	e and chronaxie	*				
Rheobas	e and AQ	N				
S-D curv	e rectangular	V.				
S-D curv	e triangular	*				
S-D curv	e rect. + tri.	×*				
Pain poir	ts					
Stress fr	acture search	ษ				
À				В		

4.1.7 Wybór terapii poprzez pamięć

Procedura

- 1. Wybierz pamięć (Memory) w Menu głównym.
- 2. Patrz § 4.9, dla opisu opcji pamięci.

4.2 Zaprogramowanie i rozpoczęcie zabiegu

4.2.1 Zaprogramowanie zabiegu

Procedura

- Wybierz pożądane menu za pomocą przycisku Home (aż pojawi się ekran zabiegowy).
- Wybierz pożądane parametry za pomocą przycisków: + i -.
- Zakres parametrów jest wyświetlany po prawej stronie, o ile wybrany parametr jest podświetlony.

4.2.2 Rozpoczęcie zabiegu

Procedura

- Pomiędzy pokrętłami natężenia a oknami wyjściowymi istnieje zależność równa JEDEN do JEDNEGO.
- Obróć odpowiednie pokrętło natężenia, aby rozpocząć zabieg i ustawić żądaną intensywność.
- Ustawiona intensywność jest wyświetlana w odpowiednim oknie wyjściowym.

Informacja:

W przypadku laseroterapii pożądany Eset jest odpowiednio regulowany. Patrz § 4.6.2.

4.2.3 Wszystkie możliwości zabiegów

- 1. Tabela pokazuje przegląd wszystkich możliwych metod terapii na dwóch niezależnych kanałach.
- Wskazuje również możliwości oddzielnych, jednoczesnych lub skojarzonych metod terapii.
- Tabela przeznaczona jest dla najbardziej rozbudowanego i kompletnego urządzenia -Combi 400.
- 4. Tabela obowiązuje również dla urządzeń Duo 400 i Pulson 400 (z pewnymi ograniczeniami)

Oba kanały są wybierane automatycznie w przypadku:

- Synchronicznych kanałów elektroterapii
- Naprzemiennych i wyboru kanałów synchronicznych z prądami NMES (tryb expert)
- Terapia skojarzona

Kanał A (lewa strona)	Kanał B (prawa strona)
ET	-
-	ET
ET (Dwubiegunowa)	ET (Dwubiegunowa)
ET	UD
ET	LA
UD	-
UD	ET
UD	LA
-	UD
LA	-
-	LA
LA	ET
LA	UD
CO (ET)	CO (UD)

4.2.4 Zaprogramowanie elektroterapii na obydwu kanałach A i B

Aparaty serii 400 mają dwa oddzielne kanały elektroterapii A i B. Kanały A i B mogą być używane niezależnie. Możesz leczyć dwa różne wskazania jednocześnie za pomocą dwóch różnych terapii.

- Wybierz kanał A lub B, a następnie dokonaj żądanych wyborów, aż dojdziesz do ekranu parametrów.
- 2. Wybierz drugi kanał.
- Wybierz pożądane leczenie dla drugiego kanału. Patrz § 4.1.
- 4. Wszystkie parametry leczenia dla obu kanałów można ustawić całkowicie niezależnie
- Obróć odpowiednie pokrętło natężenia, aby rozpocząć zabieg i ustawić żądaną intensywność. Procedurę wykonaj dla obu kanałów.
- 6. Oba zabiegi będą przebiegać niezależnie od siebie z własnym zegarem leczenia.

Kopiuj parametry kanału

W kanale drugim istnieje możliwość ustawienia tych samych parametrów dla zabiegu elektroterapeutycznego, co w kanale pierwszym.

Procedura

- Upewnij się, że parametr "Kopiuj kanał" jest włączony (Menu Ustawień systemowych). Patrz § 4.10.2.
- Wybierz pożądany protokół elektroterapii na pierwszym kanale.
- W razie potrzeby możesz zmienić parametry lub sposób działania wybranego kanału.
- 4. Wybierz drugi kanał.
- 5. Ten sam program leczenia jest automatycznie kopiowany na drugi kanał.
- 6. W razie potrzeby parametry można nadal zmieniać niezależnie od kanału.

- Obróć odpowiednie pokrętło natężenia, aby rozpocząć zabieg i ustawić żądaną intensywność. Procedurę wykonaj dla obu kanałów.
- 8. Oba zabiegi będą przebiegać niezależnie od siebie z własnym zegarem leczenia.

Kopiowanie kanałów

Celem jest użycie tych samych ustawień parametrów na obu kanałach elektroterapii i umożliwienie ich synchronizacji z jednym wspólnym zegarem leczenia.

Procedura

- Upewnij się, że zarówno parametry "Kopiuj kanał", jak i "Kanały synchroniczne" są włączone (Menu Ustawień systemu). Patrz § 4.10.2.
- Wykonaj te same czynności, co w powyższym rozdziale "Kopiuj parametry kanału".
- W oknie wyjściowym pojawi się dodatkowy "przycisk kanałów synchronicznych" w trybie aktywnym. 20.

4. Oba zabiegi będą przebiegać niezależnie od siebie z własnym zegarem leczenia.

High fre	quency TENS	*	Ē	СІ	۰	←
Treatment time	30:00	444			-	
Pulse time	200 µs				0 0 0	
	-7-					
Frequency min.	80 Hz					
Frequency max.	120 Hz					
Frequency sweep tim	ies					
Polarity	ଶ					
	CC					?
High frequen	oy TENG - P.4	Ø	1	ligh frequency	TENS - P.8	
12.0 mÅ			19.0	mÁ		20
		0				

 Po wybraniu przycisku synchronizacji oba kanały działają synchronicznie z jednym wspólnym zegarem zabiegowym O. Jakie są zalety kanałów synchronicznych?

Wyobraź sobie, że zabieg jest wykonywany jednocześnie na lewym i prawym ramieniu. Zachowanie kanałów synchronicznych pozwala uniknąć irytującej nierównowagi występującej na końcu leczenia. Dzieje się tak z racji tego, iż obie oddzielne intensywności zostaną wyzerowane dokładnie w tym samym momencie. Niniejsza procedura zapewnia optymalny komfort dla pacjenta.

Uwaga:

- Przycisk kanałów synchronicznych NIE jest odpowiedni dla obecnych typów formularzy NMES.
- Specyficzny dla 1-kanałowych prądów NMES, parametr trybów expert oferuje 2 możliwości kanały synchroniczne lub alternatywne. Dzięki temu, terapia staje się 2-kanałową elektroterapią.

4.2.5 Natychmiastowe zatrzymanie zabiegu

Procedura

- Naciśnij przycisk U. Wszystkie aktywne zabiegi zostaną natychmiast zatrzymane. Ustawienia parametrów są zachowane.
- 2. Ustaw ponownie natężenie w kanale, aby kontynuować zabieg.

Uwaga:

Przycisk stop nie funkcjonuje w laseroterapii. Wystarczy zwolnienie przycisku na sondzie laserowej.

4.2.6 Przewodnik terapii

Informacja:

Więcej informacji znajduje się w sekcji § 4.7.

Informacje o terapii

Przycisk *i* jest dostępny dla następujących protokołów: Wskazania, Cele, Jonoforeza i Obszar ciała.

Procedura

1. Naciśnij przycisk *i* . Informacje o odpowiedniej terapii zostaną wyświetlone.

Dipole vec	tor field			Ê		٠	
Treatment time	20:00	_			2787 (ð,	
		110.00	~	pore			(×
Pulse time	125 ps	The NF dip	ole vector is i	idicated as an	introduction to	exercise ber	aute R
AM frequency min.	50 Hz	releves pan (mid strauks) and because, due to the rotating vector, musi- contractions are provided which lead to a mobilising effect. Chical indications adments of today with non-and decreased rotatility, nationary				or, muscle I	
AM frequency max.	50 Hz	dysmenorri treatment a	ioea, Ailvice: rea, adjust ti	place the elect is AM frequence	trodes on the i y and the rota	nuscles arou tion time.	nd the
Rotation parameters							
				1	¥	i	?
🖕 🔎 Dipole vector fie	id - P.84			B			
Y © 17:3	9	Y					
2.0 mÅ		cc	-				
Charle proposition contra	-1						

Pomoc

Procedura

- Wybierz zabieg, jeśli nie został wybrany wcześniej. Patrz § 4.2.1.
- Wybierz odpowiedni parametr, aby uzyskać o nim informacje.
- 3. Naciśnij przycisk ? . Pomoc zostanie wyświetlona.

Treatment time	15:00	00000	00000	270"	
Carrier wave frequenc	y 4.0 kHz	4- p	ole	1904	6
Pulse time	125 pk	Dipole vector field A 4-pole medium frequen	cy current with sym	metrical biphasic sinc	kbioa
AM frequency min.	100 Hz	pulses. The 100% modula localisation of the maximu of the amplitude can be d	ation depth is presen an amplitude can be etermined manually	t in the whole IF field set: MANUALLY: the (by setting the relation	d. The e direction on antie'r
AM frequency max.	100 Hz	AUTOMATICALLY: the an the interferential field. We	mplitude rotates with th this current, deep	in the rotation time t ier lying structures ci	hrough in be
		socarsed very processly.			
Rotation parameters					
CC / CV	CC		8		?
	field - P.75		Ultraso	ind - P.31	
Dipole vector i	20	-V		. 20	~

Informacja:

Jeżeli nie został wybrany żaden parametr, program domyślnie wyświetli informacje o wybranej metodzie terapii lub jej aktualnej formie.

Umiejscowienie akcesoriów

Przycisk umiejscowienia akcesoriów, staje się widoczny po wybraniu następującego protokołu Lista wskazań bądź Obszar Ciała.

Procedura

 Naciśnij przycisk aby wyświetlić rysunek z umiejscowieniem akcesoriów. Często oferowana jest rozszerzona lista anatomicznych lokalizacji.

Progres formy prądu

W przypadku prądów NMES postęp prądu jest wyświetlany graficznie dla wybranego kanału. Daje to jasny wgląd w fazę, w której w danym momencie znajduje się prąd. W ten sposób możliwe jest optymalne poprowadzenie pacjenta podczas wykonywania danego ćwiczenia.

Treatment time	15:00	
Pulse time	300 µs	00007 00007
Pulse frequency	50 Hz	/ ⁻¹ ^s -
		1s 0s -1s
Expert modes	REST	
Expert times		/ 2s V 2s V
Polarity	2	ON REST
		?
🔬 🔎 Biphasic surge	- P.13	B
Y © 14:1	15	

4.2.7 Zawartość okna wyjściowego dla elektroterapii i terapii ultradźwiękowej

Kolor okna wyjściowego podsumowuje wybraną wcześniej metodę terapii. Terapeuta wciąż ma dostęp do przeglądu, nawet gdy zawartość ekranu w obszarze nawigacji jest skoncentrowana na drugim kanale. Wizualizacja stałych ustawień kolorów terapii powtarza się w:

- ikonie metody terapii
- pasku intensywności (elektroterapia)
- wykrytym kontakcie (terapia ultradźwiękowa)
- komunikacie z ostrzeżeniem bądź wskazówką

Wybrane okno wyjściowe ma granatowe tło.

Odczytywanie wartości – elektroterapia

- 1. Kolorowy symbol elektroterapii (zastępuje A lub B)
- 2. Nazwa aktualnego formularza
- 3. Numer programu zapisany w formacie: P.xxxx
- 4. Pozostały czas do końca zabiegu
- 5. Zastosowana polaryzacja
- 6. Zastosowanie z modułem Vacuum (opcjonalnie)
- 7. Ustawienie natężenia (pasek graficzny)
- 8. Tryby CC oraz CV
- 9. Komunikat z wskazówką
- 10. Komunikat z ostrzeżeniem

Odczytywanie wartości – terapia ultradźwiękowa

- 1. Kolorowy symbol terapii ultradźwiękowej (zastępuje A lub B)
- 2. Ultradźwięki
- 3. Numer programu zapisany w formacie: P.xxxx
- 4. Pozostały czas do końca zabiegu
- 5. Zastosowany rozmiar głowicy ultradźwiękowej
- 6. Ustawienie natężenia (Iset) w W/cm²
- 7. Moc szczytowa (P_{pk}) w W
- 8. Wykres słupkowy wykrytego kontaktu
- 9. Komunikat z wskazówką
- 10. Komunikat z ostrzeżeniem

Migający, kolorowy symbol terapii

Dotyczy znaku A, B lub kolorowego symbolu terapii w oknie kanału wyjściowego. Wskazuje, że informacje wyświetlane na ekranie w obszarze nawigacji nie są związane z oknem wyjściowym kanału. Na przykład wybór przycisku *Ustawienia systemu*, w momencie gdy wybrany już został protokół leczenia, powoduje miganie.

4.2.8 Czyszczenie okna wyjściowego kanału

Procedura

- 1. Wybierz kanał, który ma zostać wyczyszczony.
- 2. Upewnij się, że intensywność jest ustawiona na zero.
- 3. Wybierz przycisk Goback, aby powrócić do poprzedniego menu.
- 4. Możesz również wybrać przycisk Home

4.2.9 Powiększony ekran aplikacji

Powiększony ekran aplikacji dostarcza informacji, podsumowujących wybraną wcześniej metodę terapii. Terapeuta ma ciągły dostęp do przeglądu (nawet z daleka). Na tym ekranie pojawia się również wizualizacja stałych ustawień kolorów terapii.

Procedura

- 1. Wybierz terapię na danym kanale, poczekaj aż okno wyjściowe zostanie wypełnione.
- Kliknij na okno wyjściowe (o granatowej barwie), aby otworzyć powiększony ekran aplikacji.

Następujący przykład pokazuje jednoczesne zastosowanie elektroterapii i terapii ultradźwiękowej.

Ponowne kliknięcie na powiększonym ekranie aplikacji, powoduje opuszczenie danego ekranu.

4.3 Elektroterapia

4.3.1 Zabiegi elektroterapeutyczne z wykorzystaniem różnych elektrod

- 1. Wybierz pożądany program elektroterapeutyczny.
- 2. Przyłóż elektrody. W razie potrzeby skorzystaj z zakładki Informacje o terapii Patrz § 4.2.6.
- Przekręć odpowiednie pokrętło natężenia, aby rozpocząć zabieg elektroterapeutyczny i ustawić żądane natężenie.
- 4. Sprawdź reakcję pacjenta. Powyższą czynność powtarzaj regularnie w czasie zabiegu
- 5. Po upływie ustalonego czasu, aparat sygnalizuje zakończenie zabiegu.
- 6. Usuń elektrody.

Użycie elektrod silikonowych

1. Dokładnie zwilż dwa podkłady pod elektrody.

 W przypadku słabego przewodzenia użyj wody z roztworem soli fizjologicznej, aby poprawić przewodzenie podkładów.

3. Wsuń każdą z elektrod do podkładu.

4. Umieść podkłady z elektrodami na powierzchni ciała poddawanej zabiegowi.

5. Przymocuj podkłady z elektrodami do powierzchni ciała poddawanej zabiegowi za pomocą pasków mocujących.

6. Przymocuj elektrodę silikonową z czerwonym łącznikiem do czerwonego łącznika dwużyłowego kabla elektrod.

7. Przymocuj elektrodę silikonową z czarnym łącznikiem do czarnego łącznika dwużyłowego kabla elektrod.

8. Przyłącz dwużyłowy kabel do gniazda \mathbf{Y} A lub \mathbf{Y} B aparatów serii 400.

Użycie elektrod samoprzylepnych

1. Dokładnie zwilż dwa podkłady pod elektrody. Jeśli jest to możliwe, zdezynfekuj te części ciała, na których zostaną umieszczone elektrody samoprzylepne.

2. Umieść elektrody w miejscu, które poddane ma być zabiegowi.

3. Połącz łączniki elektrod samoprzylepnych z czerwonymi i czarnymi łącznikami dwużyłowego kabla elektrod.

4. Przyłącz dwużyłowy kabel elektrod do gniazda \bigvee A lub \bigvee B aparatów serii 400.

Uwaga:

W przypadku wykorzystywania w terapii prądów z dużą komponentą galwaniczną, takich jak: prąd galwaniczny, prąd diadynamiczny, prostokątny prąd średniej częstotliwości, pulsujący prąd trójkątny lub prostokątny, nie należy używać elektrod samoprzylepnych. Może to bowiem prowadzić do uszkodzenia skóry

Uwaga:

Korzystając z techniki elektrody dynamicznej, używaj wyłącznie prądów o stałym napięciu (CV). Zapobiega to nieprzyjemnym stymulacjom dla pacjenta, szczególnie w momencie gdy kontakt zostaje tymczasowo przerwany (podczas umieszczania, przemieszczania i usuwania elektrody).

4.3.2 Użycie elektrody dopochwowej, analnej i doodbytniczej

Uwaga:

- Biorąc pod uwagę bardzo personalny i intymny charakter tych zabiegów, elektrody specjalne mogą być używane tylko przez jednego pacjenta.
- Nigdy nie dezynfekuj elektrod specjalnych w autoklawie.

- Wyczyść ostrożnie elektrodę, używając np. środka o nazwie Sternosept. Opłucz czystą wodą i osusz ręcznikiem. Elektrody nie należy zanurzać w wodzie.
- 2. Wybierz pożądany program elektroterapeutyczny.
- 3. Połącz elektrodę z aparatem serii 400.
- 4. Nanieść antyseptyczny środek na elektrodę.
- 5. Umieść odpowiednio elektrodę.
- 6. Przekręć odpowiednie pokrętło natężenia, aby rozpocząć zabieg i ustawić żądane natężenie.

- 7. Sprawdź reakcję pacjenta. Powyższą czynność powtarzaj regularnie w czasie zabiegu.
- 8. Po upływie ustalonego czasu, aparat sygnalizuje zakończenie zabiegu.
- 9. Usuń elektrody.
- 10. Wyczyść elektrody. Patrz § 5.2.7.

Uwaga:

Elektrody doodbytnicze, analne i dopochwowe nie są rozpoznawane przez aparat. Stosując wyżej wymienione elektrody, do stymulacji należy wybierać jedynie prądy zmienne z aktywną funkcją *Stałe napięcie (CV)* - (Constant Voltage), takie jak TENS, NMES i 2-biegunowy prąd interferencyjny. Taki wybór zapobiega uszkodzeniom skóry i nieprzyjemnej stymulacji. Korzystając z sondy doodbytniczej, należy dodatkowo zakupić opcjonalny kabel o numerze katalogowym: 340.428. Patrz § 7.9.1.

4.3.3 Elektroterapia z wykorzystaniem sekwencji kroków

Zabieg, w którym zaprogramowana jest sekwencja kroków zawiera kilka różnych rodzajów stymulacji aplikowanych jedna po drugiej. Możliwy jest wybór z wstępnie zaprogramowanych protokołów bądź też użycie indywidulanie utworzonych protokołów sekwencyjnych. Patrz § 4.9.4. Elektroterapia z wykorzystaniem sekwencji kroków ma pewne korzyści:

- Podczas jednego zabiegu można uzyskać kilka celów (efektów).
- Można rozróżnić poszczególne fazy zabiegu, np. przygotowawczą, główną, uspakajającą.

Zmiana kroków

Natężenie określa wartość każdego szczytu podczas stymulacji. Kiedy dochodzi do zmiany kroków, wartość natężenia zostaje zachowana w pamięci aparatu. Czasem istnieje konieczność podwyższenia wartości natężenia w kolejnym kroku. Jeśli natężenie nie może być utrzymane na nastawionym poziomie ze względów bezpieczeństwa, wówczas spada do zera. Zabieg zostaje zatrzymany. Wówczas, natężenie należy nastawić ponownie.

Uwaga:

W przypadku indywidualnie utworzonych protokołów, przy każdym kolejnym przejściu, intensywność będzie spadać do zera, gdyż niemożliwe jest pełne zagwarantowanie bezpieczeństwa pacjenta.

Ustawienie zabiegu z sekwencją kroków

Procedura

- Wybierz program sekwencyjny. Czas kroku i jego parametry są bezpośrednio związane z chwilowo wybranym kolejnym numerem kroku.
- W razie potrzeby ponownie wyreguluj indywidualny czas kroku. Za pomocą parametrów kroku można uzyskać bardziej szczegółowy wygląd (w trybie tylko do odczytu) poszczególnych bieżących ustawień formularza dla wybranego kroku sekwencyjnego.
- Przekręć odpowiednie pokrętło natężenia, aby rozpocząć zabieg i ustawić żądane natężenie.

Pominięcie kroku w zabiegu

Procedura

- 1. Wciśnij przycisk, Waby chwilowo przerwać zabieg.
- 2. Wciśnij Numer kroku w sekwencji (Seq. step number), a następnie ustaw numer kroku.
- 3. Przekręć pokrętło natężenia, aby rozpocząć zabieg i ustawić żądane natężenie.

4.3.4 Przeprowadzenie zabiegu jonoforezy

W przypadku jonoforezy leki są podawane do organizmu jako elektrycznie naładowane cząstki (jony) za pomocą prądu stałego. Okno wyjściowe jonoforezy ma zbliżony wygląd do okna elektroterapii. Różni się tylko kolorem i symbolem ustalonej metody terapii.

- 1. Rozprowadź lek na sterylną gazę. Patrz §8.1.
- 2. Umieść gazę na elektrodzie. Upewnij się czy wybrana została prawidłowa polaryzacja elektrod.
- 3. Przyłóż elektrody.
- 4. Wybierz program zabiegu jonoforezy.
- 5. Nastaw natężenie tak, aby mieściło się w przedziale 0.1 0.25 mÂ/cm2. Natężenie zależne jest od powierzchni elektrod. Dla elektrod o powierzchni 6 x 8 cm (=48 cm2), natężenie powinno być nastawione w granicach 4.8 12 mÂ. Zawsze skonsultuj intensywność natężenia z pacjentem.

Uwaga:

Aby zapobiec uszkodzeniom skóry lub poparzeniom, nigdy nie należy przekraczać dawki 0.2 mÂ/cm² dla IO-Direct oraz IO-0.25 mÂ/cm2 dla IO-MF stały. Szczególną uwagę należy zwrócić na alergie, przeciwwskazania itd.

4.4 Terapia ultradźwiękowa

4.4.1 Przeprowadzenie terapii ultradźwiękowej

Uwaga:

Podczas wykonywania zabiegu należy przemieszczać głowicę ultradźwiękową po skórze by uniknąć poparzeń wewnętrznych.

Procedura

- 1. Wybierz pożądaną terapię ultradźwiękową.
- Połącz wtyczkę kabla głowicy ultradźwiękowej z gniazdem aparatu serii 400. Możliwe jest podłączenie dwóch głowic ultradźwiękowych, jednak tylko jedna głowica może być w użyciu. Urządzenie wykrywa, która głowica jest aktualnie podłączona do gniazda. Ustaw parametr ERA na 1 lub 4 cm2. Migająca, niebieska dioda LED, wskazuję na wybraną głowicę ultradźwiękową.
- Rozprowadź po skórze i po głowicy ultradźwiękowej żel kontaktowy.

- 4. Umieść głowicę ultradźwiękową na skórze.
- 5. Przekręć pokrętło natężenia, aby rozpocząć zabieg.
- Sprawdź reakcję pacjenta oraz działanie zabiegu. Powyższą czynność powtarzaj regularnie w czasie zabiegu.
- 7. Po upływie ustalonego czasu, aparat sygnalizuje zakończenie zabiegu.

Fonoforeza jest rodzajem kuracji fizjoterapeutycznej polegającej na stosowaniu ultradźwięków, które pomagają w szybszej i głębszej aplikacji leków, zwłaszcza leków przeciwzapalnych (NLPZ) lub środków miejscowo znieczulających.

- 1. Używaj leków (maści żelowej) zamiast żelu kontaktowego
- 2. Wybierz z poziomu *Cele terapii*, lub bezpośrednio używając przycisku
- 3. W razie potrzeby zmień domyślnie ustawione parametry.

4.4.3 Zawartość okna wyjściowego dla Fonoforezy i Terapii ultradźwiękowej

Informacja:

- Aby odczytać wartości ultradźwięków, patrz § 4.2.7.
- Okno wyjściowe fonoforezy ma zbliżony wygląd do okna terapii ultradźwiękowej. Różni się tylko kolorem i symbolem ustalonej metody terapii.

Îset (W/cm²) Moc (W) głowicy ultradźwiękowej na cm².

P_{pk}(W) Moc szczytowa głowicy (Îset * ERA). Moc szczytowa zależy zatem od rozmiaru głowicy US oraz kontaktu ze skórą pacjenta. Wartość ta wynosi 0.0 W jeśli kontakt ze skórą jest zły. W tym wypadku następuje zatrzymanie zabiegu, w celu zapobieżenia przegrzania przetwornika (głowicy).

Kontakt głowicy ultradźwiękowej ze skórą

Wykres słupkowy przedstawia poziom wykrycia kontaktu głowicy ultradźwiękowej ze skórą.

0000	Brak wypełnionych kresek	Brak kontaktu
	Kreski wypełnione częściowo	Wystarczający lub bardzo dobry kontakt
otl	Kreski wypełnione całkowicie	

Sprawdź głowicę ultradźwiękową w przypadku złego przewodzenia. Patrz § 5.1.1.

4.4.4 Lampka kontrolna głowicy ultradźwiękowej

Lampka kontrolna dostarcza następujących informacji:

Światło kontrolne	Przyczyna
Krótkie błyski:	Sygnalizuje prawidłowe podłączenie głowicy ultradźwiękowej lub koniec zabiegu.
Ciągłe:	Trwa emisja ultradźwięków.
Migające:	Nieprawidłowy kontakt głowicy ze skórą.

4.5 Terapia skojarzona

4.5.1 Przeprowadzenie zabiegu terapii skojarzonej

Uwaga:

W przypadku terapii skojarzonej, głowica ultradźwiękowa ma zawsze polaryzację ujemną. Elektroda zamykająca obwód ma polaryzację dodatnią.

W terapii skojarzonej, maksymalna gęstość prądu nie może przekraczać 2.0 mArms/cm2. Zwiększenie gęstości prądu może spowodować podrażnienia skóry i poparzenia. Gęstość prądu uzależniona jest od powierzchni głowicy ultradźwiękowej. W przypadku głowicy o powierzchni 4 cm2, maksymalny prąd nie może przekraczać 8 mArms, natomiast w przypadku głowicy o powierzchni 1 cm2 - 2 mArms.

- 1. Wciśnij przycisk 🏙 aby wybrać terapię skojarzoną.
- Wybierz odpowiedni prąd. Lewy kanał odpowiada elektroterapii, prawy natomiast terapii ultradźwiękowej.
- Umieść elektrodę podłączoną do czerwonej wtyczki pacjenta, utrzymując wolną czarną wtyczkę kabla.
- 5. Rozprowadź po skórze i po głowicy ultradźwiękowej żel kontaktowy.
- 6. Umieść głowicę ultradźwiękową na skórze.
- 7. Przekręć pokrętło natężenia, aby rozpocząć elektroterapię. Nastaw żądaną wartość napięcia.
- 8. Przekręć pokrętło natężenia, aby rozpocząć terapię ultradźwiękową.
- Sprawdź kontakt głowicy ultradźwiękowej ze skórą. Zły kontakt głowicy mogą wskazywać następujące reakcje aparatu:
 - Zabieg zostaje zatrzymany
 - Natężenie ultradźwięków spadnie do 0.0 Watt.
- Sprawdź reakcję pacjenta oraz działanie zabiegu. Powyższą czynność powtarzaj regularnie w czasie zabiegu.
 - 11. Po upływie ustalonego czasu, aparat sygnalizuje zakończenie zabiegu.

4.5.2 Odczytywanie wartości dla terapii skojarzonej

1.	Kolorowy symbol terapii skojarzonej (zastępuje A lub B)	Kolorowy symbol terapii skojarzonej (zastępuje A lub B)
2.	UD + Nazwa aktualnego formularza	-
3.	Numer programu zapisany w formacie: P.xxxx	-
4.	Pozostały czas do końca zabiegu	Zastosowana wielkość głowicy ultradźwiękowej
5.	Zastosowana polaryzacja (czerwony +)	Ustawienie natężenie (I_{set}) w W/cm ²
6.	Zastosowanie z modułem Vacuum (opcjonalnie)	Moc szczytowy (P _{pk}) w W
7.	Ustawienie natężenie (pasek graficzny)	Bargraf wykrycia kontaktu
8.	Tryby CV (ustawione)	-
9.	Komunikat z wskazówką	Komunikat z wskazówką
10.	Komunikat z ostrzeżeniem	Komunikat z ostrzeżeniem

4.6 Laseroterapia

4.6.1 Bezpieczeństwo pracy z laserem

Uwaga:

Rozpocznij laseroterapię tylko wtedy, gdy wszystkie osoby w pomieszczeniu będą mieć założone okulary ochronne.

4.6.2 Przeprowadzenie zabiegu laseroterapii

Procedura

- 1. Upewnij się, że wszystkie osoby mają założone okulary ochronne
- 2. Podłącz złącze sondy laserowej do gniazda

- 3. Wybierz program laseroterapii
- Odblokuj laser, wprowadzając kod dostępu. Patrz § 4.10.3 w celu zmiany kodu dostępu.
- Wybierz pożądaną laseroterapię. Używając odpowiedniego pokrętła regulacji, możesz dostosować wartość E_{set}. Wówczas, zapali się zielona lampka kontrolna na sondzie

laserowej. Przy liście wskazań bądź wyborze obszaru ciała, dostępny jest przycisk umiejscowienia

sondy.

- 6. Umieść sondę laserową na skórze pacjenta.
- Naciśnij czarny przycisk znajdujący się na sondzie laserowej, aby rozpocząć terapię. Wówczas zaświeci się żółta lampka kontrolna na sondzie. Przytrzymaj przycisk, puszczenie go spowoduje zatrzymanie zabiegu.
- Sprawdź reakcję pacjenta oraz działanie zabiegu. Powyższą czynność powtarzaj regularnie w czasie zabiegu.
- 9. Po upływie ustalonego czasu, aparat sygnalizuje zakończenie zabiegu.
- 10. Puść czarny przycisk znajdujący się na sondzie laserowej.

4.6.3 Odczytywanie wartości - laseroterapia

- 1. Kolorowy symbol laseroterapii (zastępuje A lub B)
- 2. Laseroterapia
- 3. Numer programu zapisany w formacie: P.xxxx
- 4. Pozostały czas do końca zabiegu
- 5. Zastosowana laseroterapia
- 6. Test emisji lasera T
- 7. Ustawienie mocy E_{set} (mJ lub J)
- 8. Całkowita moc (E_{tot}) w mJ lub J
- 9. Średnia moc (Pav) w mW
- 10. Komunikat z wskazówką
- 11. Komunikat z ostrzeżeniem

Pav (μW lub mW)	Ustawiona średnia moc sondy laserowej		
	(Ep moc impulsu x częstotliwość)		
E _{tot} (mJ lub J)	Całkowita administrowana energia dla danego zabiegu		
	(P _{av} x czas trwania zabiegu).		
E _{set} (mJ lub J)	Zalecana energia do podania pacjentowi.		

4.6.4 Testowanie emisji lasera

- 1. Ustaw program laseroterapii. Patrz §4.6.2.
- 2. Umieść wyjście sondy laserowej prostopadle na oku testowym lasera ${}^{ imes}$.
- Naciśnij i przytrzymaj czarne pokrętło na sondzie laserowej podczas testu laserowego. Symbol testu laserowego T pojawia się na oknie danych wyjściowych za symbolem sondy.
- 4. Wartości E_{tot} oraz P_{av} wzrastają co sekundę, do momentu aż wartość E_{tot} value osiągnie wartość E_{set} .
- 5. Zwolnij czarne pokrętło na sondzie laserowej.

Możesz także przetestować wartość energii przypadającej na impuls sondy laserowej § 4.10.8.

4.6.5 Lampki kontrolne na sondzie laserowej

Lampka kontrolna	Przyczyna	
Ciągłe zielone:	Wybrano terapię laserową, ale sonda laserowa nie emituje promieniowania laserowego.	
Ciągłe żółte:	Trwa emisja lasera.	
Migające żółte:	Aktywowane jest dwusekundowe opóźnienie bezpieczeństwa, w celu uniknięcia przypadkowej emisji lasera bądź też przypadkowego zakończenia zabiegu laseroterapii.	

Lampki kontrolne na sondzie laserowej dostarczają następujących informacji:

4.7 Biblioteka anatomiczna

Dostęp do biblioteki anatomicznej, umożliwia uzyskanie informacje na temat układu mięśniowoszkieletowego. Użycie funkcji jest możliwe nawet w trakcie leczenia, co sprawia, iż jest to najwygodniejszy sposób poinformowania pacjenta o urazie.

- 1. Wybierz przycisk Bibliotek anatomicznej:
- Wybierz część ciała, o której chcesz wyświetlić dodatkowe informacje, oraz odpowiedni element z listy.
- 3. Wyświetlane są informacje anatomiczne.

4.8 Programy diagnostyczne

Za pomocą programów diagnostycznych można badać elektryczną pobudliwość układu nerwowomięśniowego:

- Reobazę i chronaksję. Patrz §4.8.1.
- Reobazę i AQ (Współczynnik akomodacji). Patrz §4.8.2.
- Krzywą I/T. Patrz §4.8.3.

Ponadto aparat posiada programy diagnostyczne służące wyszukiwaniu:

- Punktów bólowych.
- Miejsc złamań zmęczeniowych.

4.8.1 Wyznaczanie Reobazy i Chronaksji

- Wybierz Programy diagnostyczne (Diagnostic Programs).
- Wybierz Reobazę i chronaksję (Rheobase and chronaxie)
- Przekręć pokrętło natężenia, aby rozpocząć zabieg. Nastawione natężenie wyświetlone jest na ekranie.
- Zwiększaj natężenie o 0.1 mÂ, do momentu w którym zaobserwujesz widoczny skurcz mięśniowy.

Rheoba	se and chronaxie	*	Ê	СІ	٠	\leftarrow
Pulse shape	л					
Pulse time	- 0.1 ms + < 0.1 m	ns - 100 ms				
Pulse pause	1000 ms					
Polarity	N					
						?
Chronassie -	*** 🕇		В			
2.8 mÅ	able	0				

- 5. Potwierdź amplitudę impulsu. Wartość zmierzonej reobazy (w mÂ) jest zapisana.
- Teraz aparat podwaja wartość reobazy (mÂ). Czas impulsu zostaje zmieniony na 0.1 ms.
 Wydłużaj czas impulsu za, do momentu, w którym zaobserwujesz widoczny skurcz mięśniowy.
- 7. Potwierdź czas impulsu. Chronaksja (w ms) zostanie zapisana. Wynik pojawi się na ekranie.
- 8. Jeśli jest to konieczne, wciśnij przycisk aby zapisać badanie w pamięci Patrz §4.9.1.

4.8.2 Wyznaczanie Reobazy i Współczynnika akomodacji (AQ)

- Wybierz Programy diagnostyczne (Diagnostic Programs).
- Wybierz Reobazę i Współczynnik akomodacji (Rheobase and AQ).
- Wyznacz reobazę w identyczny sposób jak w przypadku wyznaczania Reobazy i chronaksji (Rheobaze and chronaxie). Patrz §4.8.1.
- Potwierdź amplitudę pulsu. Wartość zmierzonej reobazy jest zapisana.
- 5. Teraz aparat nastawia impulsy trójkątne.
- Zwiększaj natężenie o 0.1 mÂ, do momentu, w którym zaobserwujesz widoczny skurcz mięśniowy.
- Potwierdź amplitudę pulsu. Wartość zmierzonego współczynnika akomodacji jest zapisana.
 Wynik pojawi się na ekranie.
- 8. Jeśli jest to konieczne, wciśnij przycisk 🕒, aby zapisać badanie w pamięci Patrz §4.9.1.

4.8.3 Wyznaczanie krzywej I/T

Procedura

- 1. Wybierz Programy Diagnostyczne.
- Wybierz krzywą I/t (prostokątną). Krzywą I/t (trójkątną) lub krzywą I/t (prostokątną + trójkątną).
- W razie potrzeby zmień tryb nagrywania. Jeśli dla trybu nagrywania wybrano opcję Ręcznie, możesz pominąć lub powtórzyć pomiar, zmieniając czas impulsu.

4. Wybierz tryb automatyczny (Auto mode), bądź tryb ręczny (Manual mode).

Tryb automatyczny:

- 5. Przekręć pokrętło natężenia, aby rozpocząć zabieg.
- Zwiększaj natężenie o 0.1 mÂ, do momentu w którym zaobserwujesz widoczny bądź namacalny skurcz mięśniowy.
- Potwierdź amplitudę impulsu. Wynik pomiaru jest pokazany bezpośrednio na wykresie. W trybie automatycznym wybierana jest nowa wartość impulsu i jego kształt.
- 8. Powtórz krok 5 i 7 dla wszystkich pomiarów.
- Kiedy pojawi się napis END, pomiar jest zakończony. Jeśli jest to konieczne, wciśnij przycisk aby zapisać badanie w pamięci aparatu. Patrz §4.9.1.

Tryb ręczny

10. Postępuj zgodnie z instrukcjami zawartymi w powyższej sekcji. Po każdej potwierdzonej amplitudzie domyślny kształt i czas impulsu może zostać zmieniony. W trybie ręcznym dany krok można pominąć, wykonać ponownie lub zmierzyć w losowej kolejności, w trybie automatycznym natomiast sekwencja pomiaru jest stała.

4.9 Pamięć

Istnieją dwie różne ścieżki dostępu do funkcji pamięci.

1. Zapisz program:

Pierwsza z nich to przycisk Zapisz program B, pojawiający się na ekranie parametrów terapii o zerowej intensywności lub po wyświetleniu ekranu z wynikiem diagnostycznym. Dostępne opcje zapisywania programu to:

Jako własny program	5	
Jako ulubiony		
Jako wynik diagnostyczny	E	Służy wyłącznie do zapisu wyników
Jako program sekwencyjny	Ţ	
Jako program wspólny	-74	
Zmień domyślny program		

Wszystkie programy zostaną zapisane pod unikalnym numerem. Istnieje 500 bezpłatnych lokalizacji służących do zapisywania indywidualnych i ulubionych programów oraz 200 bezpłatnych lokalizacji dla wyników diagnostycznych. Istnieje 100 bezpłatnych lokalizacji służących do tworzenia spersonalizowanych protokołów sekwencyjnego leczenia. Istnieje 50 bezpłatnych lokalizacji służących do utworzenia listy udostępnianych programów. Filozofia wspólnych programów polega na tym, że tę samą listę określonych programów można w łatwy sposób skopiować na wiele urządzeń. W tym celu listę programów współdzielonych należy pobrać na USB i umożliwić przesyłanie za pośrednictwem tego samego USB na inne urządzenia. Prawidłowa procedura znajduje się w sekcji § 4.10.9.

2. Otwórz program:

Wybierz element Memory na ekranie głównym, aby pobrać i otworzyć wcześniej zapisany program lub wynik diagnostyczny. Dostępne są następujące programy:

- programy spersonalizowane
- ulubione
- programy diagnostyczne
- programy sekwencyjne
- programy wspólne

4.9.1 Zapis programu lub wyniku diagnostycznego

Procedura

- Naciśnij przycisk z ekranu parametrów terapii lub wyniku diagnostycznego.
- 2. Wybierz podwybór do zapisu.
- Wybrany zostanie pierwszy, wolny numer programu. W razie potrzeby użyj paska przewijania, aby przewinąć listę i wybrać inny dostępny numer programu.
- Wybierz następujący przycisk aby
 zapisać lub przycisk aby wyjść bez zapisywania.

4.9.2 Nadpisanie zapisanego programu

Procedura

 W przypadku wyboru, wcześniej zapisanego programu, zostaniesz poproszony o potwierdzenie jego nadpisania.

Uwaga:

Nadpisywanie programu NIE jest możliwe w przypadku protokołów sekwencyjnego leczenia.

4.9.3 Domyślne programy terapii i określone możliwości modyfikacji

Przez programy domyślne rozumie się: wszystkie programy, które można wywołać za pomocą klawiszy bezpośredniego wyboru terapii znajdujących się po prawej stronie ekranu głównego.

Zmień program domyślny

Celem jest zmiana i nadpisanie programu domyślnego. Możesz edytować ustawienia parametrów domyślnego programu terapeutycznego i przechowywać zmodyfikowany program z jego nowymi spersonalizowanymi ustawieniami, wciąż zachowując poprzedni numer programu.

Udostępnianie programów

Celem jest utworzenie listy wspólnych programów. Możesz używać tylko domyślnych programów terapeutycznych lub edytować ustawienia parametrów domyślnego programu, aby zapisać je na liście programów wspólnych.

Programy sekwencyjne (nie dla aparatu Pulson)

Celem jest stworzenie własnych protokołów sekwencyjnego leczenia.

Możesz używać tylko domyślnych programów elektroterapii lub edytować ustawienia parametrów domyślnego programu elektroterapii, aby tworzyć własne sekwencyjne protokoły leczenia

4.9.4 Tworzenie sekwencyjnych protokołów elektroterapii

Ścieżka sekwencyjna działa całkowicie niezależnie od pozostałych pozycji w menu pamięci. Wybór programu sekwencyjnego jest możliwy, tylko wtedy, gdy bieżący formularz jest domyślnym programem elektroterapii. Możliwe jest stworzenie 100 programów sekwencyjnych składających się z maksymalnie 5 różnych kroków sekwencyjnych dla każdego programu. Ustawione natężenie jest automatycznie zmniejszane do zera przy każdym kolejnym przejściu ze względów bezpieczeństwa pacjenta. Użytkownik musi ponownie ustawić natężenie, na początku każdego nowego kroku sekwencyjnego. Umożliwia to tworzenie kolejnych etapów, mających własny cel terapeutyczny w ramach leczenia (na przykład: rozgrzewanie, aktywacja, chłodzenie,...).

Procedura

 Na początku automatycznie wybierany jest pierwszy wolny numer programu sekwencyjnego, zawierający pierwszy wolny krok programu sekwencyjnego (= 1 SEQ). Wciąż możliwe jest umieszczenie pierwszego sekwencyjnego kroku za innym numerem programu. Nazwa programu sekwencyjnego jest wypełniana podczas zapisywania pierwszego kroku sekwencyjnego.

 Wybierz istniejący numer programu sekwencyjnego, aby dodać nowy krok sekwencyjny. Wówczas, pojawi się ekran przeglądu sekwencyjnego. Nowy krok sekwencyjny jest automatycznie pozycjonowany wzdłuż pierwszego wolnego kroku.

- 3. Niemożliwe jest:
- a) wybranie kolejnego, wolnego kroku sekwencyjnego
- b) nadpisanie wypełnionego kroku sekwencyjnego
- c) przesunięcie wypełnionego kroku sekwencyjnego
- d) usunięcie wypełnionego kroku sekwencyjnego
- e) otwarcie program sekwencyjny, który zawiera już 5 sekwencji.
- Pojawi się komunikat z następującą informacją: = 5 SEQ

4.9.5 Otwórz zapisany program

Wybierz Pamięć (Memory) na ekranie głównym.

Procedura

- 1. Z tego poziomu użytkownik uzyskuję dostęp do:
- a) Programów spersonalizowanych
- b) Ulubionych
- c) Programów diagnostycznych
- d) Programów sekwencyjnych
- e) Programów wspólnych
- 2. Wybierz przycisk 2^{\pm} aby posortować listę w

kolejności alfabetycznej lub przycisk ¹¹aby posortować listę w kolejności numerycznej.

3. W razie potrzeby użyj paska przewijania w celu wyboru programu lub wyniku diagnostycznego.

Dostępne są następujące przyciski: Edytuj 🖉 , Otwórz 🗁 , Usuń 间 i Przenieś 🦉

Zmień nazwę programu

- 1. Wybierz program, którego nazwę chcesz zmienić.
- 2. Naciśnij przycisk . Wówczas pojawi się klawiatura oraz tekst "Program zostanie zapisany jako"
- 3. Wprowadź nową nazwę dla programu.
- 4. Wybierz przycisk aby potwierdzić lub aby wyjść bez uprzedniej zmiany nazwy programu.

Otwórz program diagnostyczny

Procedura

- 1. Wybierz program, który chcesz otworzyć.
- 2. Wybierz przycisk Przycisk Przycisk Otwórz nie jest dostępny.
- 3. Po wyborze programu diagnostycznego, pojawią się odpowiadające mu informacje.
- Po wybraniu programu pojawi się program terapii. W razie potrzeby, możliwe jest rozpoczęcie terapię.

Usuń program diagnostyczny

Procedura

- 1. Wybierz program, który chcesz usunąć.
- 2. Naciśnij przycisk . Pojawi się następujący komunikat "Czy usunąć ten program?"
- 3. Naciśnij przycisk aby potwierdzić bądź aby odrzucić.

Przenieś program

- 1. Wybierz program, który zamierzasz przenieść.
- 2. Naciśnij przycisk odpowiadający tej funkcji:
- a) Po wybraniu listy ulubionych, program zostanie przeniesiony na listę własnych programów.
- b) Po wybraniu listy własnych programów program zostanie przeniesiony na listę ulubionych.
- 3. Naciśnij przycisk v aby potwierdzić bądź aby odrzucić.
4.10 Ustawienia spersonalizowane a ustawienia systemu

Oprócz wyboru języka, użytkownik ma możliwość spersonalizowania ustawień urządzenia, zamiast korzystania z domyślnych fabrycznych ustawień systemowych. Kreator konfiguracji umożliwia spersonalizowanie domyślnych ustawień. Patrz § 4.10.1. Poniższa tabela pokazuje, że oba główne tematy w dużym stopniu się pokrywają.

Ustawienia	Spersonalizowane	Edytowalne w
	vs Kreator instalacji	Ustawieniach systemu
Kalibracja panelu dotykowego	-	x
Język	x	x
Data i godzina	x	х
Klawiatura {wygląd}	x	х
Dźwięk	x	х
Kopiowanie kanału	x	х
Synchronizacja kanałów	x	х
Informacje o systemie	-	х
Historia błędów	-	х
Informacje o ekranie startowym urządzenia	x	x
Ikony terapii {wygląd}	x	x
Ekran Vacuum {wygląd}	x	х
Kod dostępu lasera	x	x
Test akcesoriów	-	x
Zatrzymaj licznik w przypadku złego kontaktu	x	x
głowicy ze skórą		
Przywróć programy domyślne	-	x
Wprowadzenie ścieżki pamięci	x	х
Wyczyść pamięć	-	х
Kreator personalizacji ustawień	-	х
Programy wspólne	-	x

4.10.1 Ustawienia spersonalizowane

Kreator konfiguracji uruchamia się automatycznie przy pierwszym włączeniu urządzenia. Kreator umożliwia przeprowadzenie użytkownika przez ustawienia urządzenia w celu nadania im spersonalizowanego charakteru. Postępuj zgodnie z instrukcjami wyświetlanymi na ekranie, aby dokonać odpowiednich wyborów.

Procedura

- Możesz swobodnie korzystać z kreatora konfiguracji, tymczasowo go pominąć lub zgodzić się na korzystanie z domyślnych fabrycznych ustawień systemu.
- W dalszym ciągu możliwe jest uruchomienie kreatora konfiguracji w późniejszym czasie za pomocą menu Ustawień systemu.

4.10.2 Ustawienia systemu

Za pomocą ustawień systemu możliwe jest rzeczywiste dostosowanie zapisanych ustawień urządzenia. Nie można natomiast, zmienić ustawień systemu podczas przeprowadzania terapii.

Procedura

1 Naciśnij przycisk

w menu głównym, aby

otworzyć menu ustawień systemu.

٠

 Wybierz pożądane ustawienie systemu i wprowadź zmiany.

SYSTEM SET	TINGS	~ 🏛	CI	۰	←
Touch panel calibration	Day	3			1
Language	Month	May			
Date and Time	Year	2018			
Keyboard layout					
Sound	Hour	10			
Copy channel	Minutes	21			
Synchronic channels	Seconds	30			
System information					4
Ą		В			

4.10.3 Opis ustawień systemu

Kalibracja ekranu dotykowego: Naciśnij Start i postępuj zgodnie z instrukcjami wyświetlanymi na ekranie.

Język: wybierz język, w którym chciałbyś, żeby pracował aparat.

Data i godzina: Ustawienie daty i godziny. Wybierz dzień, miesiąc, rok, godzinę minuty i sekundy.

Panel wprowadzania / klawiatura (QWERTY lub AZERTY): Zmienia wygląd klawiatury na ekranach, na których pokazana jest klawiatura.

Dźwięk: Zmień ustawienia dźwięku.

Kopiuj parametry kanału (włączone, wyłączone): Wybierz czy kanały A i B są takie same (włączone) czy inne (wyłączone). Patrz § 4.2.4.

Synchronizacja kanałów (włączone, wyłączone): Dostępne, gdy opcja Kopiuj parametry kanału jest WŁĄCZONA. Wybierz, aby oba kanały działały z jednym timerem leczenia (włączony) lub każdy kanał używał własnego timera leczenia. Opcja nie dotyczy prądów NMES i kształtów prądów 4-biegunowych. Patrz § 4.2.4.

Informacje o systemie: Informacje o systemie urządzenia. Jeśli kontaktujesz się z serwisem technicznym funkcja ta powinna być dostępna.

Historia błędów: Całkowita liczba raportów o błędach, które wystąpiły w aparacie wraz ze szczegółowym opisem ostatnich 10 błędów. Jeśli kontaktujesz się z serwisem technicznym funkcja ta powinna być dostępna.

Informacje o ekranie startowym urządzenia: Wprowadź bądź modyfikuj informacje. Patrz § 4.10.4.

Ikony terapii:. Zmień wygląd ikon terapii, wybierając między opcją z nazwą terapii lub bez niej. Patrz § 3.6.2

Ekran Vacuum: Zmień wygląd ekranu parametrów vacuum. Patrz § 4.11.

Kod dostępu lasera: Wybierz nowy kod, aby uzyskać dostęp do funkcji lasera. Domyślnie ustawiony kod to: 1234.

Test akcesoriów: Wybierz spośród następujących testów:

- Test elektrod. Sprawdza stan elektrod silikonowych. Patrz§ 4.10.5.
- Test kabla do elektroterapii. Sprawdza stan kabli. Patrz § 4.10.6.
- Test węża spustowego. Sprawdza stan węży używanych przy terapii podciśnieniowej vacuum (jeśli występuje). Patrz § 4.10.7.
- Pomiar mocy lasera. Sprawdza stan sondy laserowej. Patrz § 4.10.8.

Zatrzymanie licznika w przypadku złego kontaktu głowicy ze skórą: Włączony: Zabieg zostanie zatrzymany, jeśli kontakt głowicy ze skórą będzie niedostateczny. Po poprawnym ustawieniu głowicy, zabieg zostanie wznowiony.

Przywróć programy domyślne: Zawartość wszystkich zmodyfikowanych programów domyślnych jest przywracana do domyślnych ustawień producenta.

Wprowadzenie ścieżki pamięci: Wybrane ustawienie, natychmiast otworzy żądaną ścieżkę podrzędną.

Wyczyść pamięć: Usuń całą pamięć bądź jej część w jednym kroku.

Kreator personalizacji ustawień: Umożliwia ponowne uruchomienie kreatora konfiguracji, aby nadać urządzeniu bardziej spersonalizowany charakter. Patrz § 4.10.1.

Programy wspólne: Lista konkretnych programów może być przeniesiona na wiele urządzeń. Instrukcja prawidłowego wysyłania i pobierania listy programów na nośnik USB znajduje się w sekcji § 4.10.9.

4.10.4 Ustawienie tekstu dla ekranu startowego

Możliwe jest wprowadzenie własnego tekstu dla ekranu startowego. Może to być na przykład powitanie.

Procedura

- 1. Naciśnij przycisk
- 2. Wybierz Informacje o ekranie startowym.

Ó

- 3. Postępuj zgodnie z instrukcjami wyświetlanymi na ekranie, aby wprowadzić zmiany.
- 4. Wybierz, waby zapisać informacje lub , aby pozostawić je bez zmian.

4.10.5 Test elektrody płytkowej

Procedura

- 1. Naciśnij przycisk
- 2. Wybierz Test akcesoriów.
- 3. Wybierz Test elektrody płytkowej
- 4. Podłącz kabel elektrod do kanału A.
- Połóż elektrody jedna na drugiej bez podkładów. Upewnij się czy elektrody mają ze sobą kontakt na całej powierzchni.
- 6. Nastaw amplitudę na 20 mA za pomocą pokrętła A.
- 7. Jeśli elektrody działają prawidłowo, na wyświetlaczu pojawi się następująca informacja: OK
- 8. Nastaw amplitudę z powrotem na 0 mA.

Ó

4.10.6 Test kabla

Procedura

- 1. Naciśnij przycisk
- 2. Wybierz Test akcesoriów.
- 3. Wybierz Test kabla.
- 4. Podłącz kabel elektrod do kanału A.
- 5. Złączkę testową połącz z końcówkami kabla elektrod.
- 6. Nastaw amplitudę na 20 mA za pomocą pokrętła A.
- 7. Jeśli kabel działa prawidłowo, na wyświetlaczu pojawi się następująca informacja: OK
- 8. Nastaw amplitudę z powrotem na 0 mA.

4.10.7 Test rurki do terapii podciśnieniowej Vacuum

Procedura

- 1. Naciśnij przycisk
- 2. Wybierz Test akcesoriów.
- 3. Wybierz Test rurki do terapii podciśnieniowej Vacuum.
- 4. Postępuj zgodnie z instrukcjami widocznymi na ekranie.

Uwaga:

Test nie wykrywa potencjalnej usterki powodującej wyciek z rurki.

4.10.8 Pomiar mocy lasera

Procedura

- Aby wyniki były miarodajne, zawsze dokonuj pomiaru mocy lasera na "zimnym" (nie dopiero co użytym) urządzeniu.
- 2. Upewnij się, że wszystkie osoby mają założone okulary ochronne.
- 3. Podłącz złącze sondy laserowej do złącza 👬 aparatu serii 400.
- 4. Naciśnij przycisk , a pojawi się ekran ustawień.
- 5. Wybierz Test akcesoriów.
- 6. Wybierz Pomiar mocy lasera.
- 7. Dokonaj testu monoprobe lub clusterprobe.

Test monoprobe

Procedura

- 1. Umieść wyjście sondy laserowej prostopadle na oku testowym lasera
- 2. Naciśnij i przytrzymaj czarne pokrętło na sondzie laserowej podczas testu laserowego.
- 3. Przesuń sondę do przodu i do tyłu, aby uzyskać maksymalną wartość.
- 4. Zwolnij czarne pokrętło na sondzie laserowej.
- Upewnij się, że zmierzona wartość Ep odpowiada ± 20% wartości Ep wskazanej w raporcie kontroli sondy laserowej.

Test clusterprobe

Procedura

- Umieść wyjście sondy laserowej prostopadle na oku testowym lasera m, przy pierwszej diodzie laserowej.
- 2. Naciśnij i przytrzymaj czarne pokrętło na sondzie laserowej podczas testu laserowego.
- 3. Przesuń sondę do przodu i do tyłu, aby uzyskać maksymalną wartość.
- 4. Zwolnij czarne pokrętło na sondzie laserowej.
- 5. Powtórz pomiar dla pozostałych diod.
- 6. Obliczyć sumę czterech zmierzonych wartości Ep.
- Upewnij się, że suma wartości Ep odpowiada w granicach ± 20% całkowitej wartości Ep wskazanej w raporcie kontroli sondy laserowej dostawcy.

4.10.9 Programy wspólne – wgrywanie i pobieranie

Ma na celu rozłożenie określonej części zapisanych programów na wiele urządzeń. Ta ścieżka sprawia, że udostępnione programy można pobrać na USB (eksport) i załadować na inne urządzenie z serii 400 (import).

Procedura

- 1 Wybierz cel, który chcesz osiągnąć.
- Postępuj zgodnie z instrukcjami widocznymi na ekranie.

Uwaga:

Jeśli pewne funkcje NIE są dostępne w urządzeniu, wówczas konkretne protokoły leczenia NIE mogą zostać przesłane. Na przykład ŻADNE protokoły terapii ultradźwiękowych nie mogą zostać przesłane do urządzenia Duo 400.

4.11 Terapia podciśnieniowa Vacuum

Zastosowanie terapii podciśnieniowej vacuum należy postrzegać jako korzyść przy wykonywaniu zabiegów elektroterapii lub terapii skojarzonej u pacjenta. Zastosowanie przyssawek próżniowych zapewnia wiekszy komfort pacjenta porównaniu z użyciem taśm mocujących. w Na ekranie głównym znajduję się przycisk terapii podciśnieniowej vacuum (wyłącznie, jeśli moduł do terapii jest dostępny). Jednostka vacuum jest zasilana przez główne urządzenie serii 400 (Patrz § 2.3). Ustawienia parametrów są dostępne na ekranie dotykowym głównego urządzenia. Wybór przycisku terapii podciśnieniowej vacuum spowoduje otwarcie ekranu ustawień parametrów tejże terapii. Wygląd ekranu parametrów można z łatwością dostosować. W menu ustawień systemu można wybierać miedzy tradycyjnym wyglądem parametrów lub wyglądem imitującym deskę rozdzielczą. (Patrz § 4.10) Oba wyglądy oferują te same ustawienia parametrów.

- 1. Tradycyjny wygląd
- 2. Wygląd imitujący deskę rozdzielczą (Patrz § 4.11.3).

4.11.1 Podłączenie i przygotowanie elektrod próżniowych

Uwaga:

- Zawsze używaj wody demineralizowanej z elektrodami próżniowymi, aby uniknąć osadzania się kamienia w zbiorniku, rurkach i podkładach. Dodaj roztwór soli fizjologicznej, aby poprawić przewodnictwo elektryczne.
- Używaj tylko wilgotnych podkładów. Zbyt suche podkłady mogą powodować zły kontakt elektryczny i poparzenia skóry
- Nie należy używać elektrod próżniowych z prądem stałym. Prąd stały powoduje uszkodzenie stali nierdzewnej przez jonizację.
- Procedura
 - 1. Podłącz elektrody próżniowe do węży próżniowych.

- Podłącz cztery węże próżniowe. Wybierz dwa kable z tym samym kolorem węża dla każdego kanału.
- Podłącz czerwone złącza węży próżniowych do prawych złączy wyjściowych każdego z kanału.
- Podłącz czarne złącza węży próżniowych do lewych złączy wyjściowych każdego z kanału
- TT

- 2. Zwilż okrągłe podkłady.
- 3. Umieść podkłady w elektrodach próżniowych.

4.11.2 Użycie elektrod tradycyjnych i przyssawek próżniowych

Procedura

- Naciśnij przycisk w menu głównych, aby przejść do parametrów terapii podciśnieniowej vacuum.
- 2. Wybierz kanał A i B, aby włączyć jeden lub oba kanały elektrod próżniowych.
- 3. Wybierz Pompa próżniowa, a następnie włącz pompę próżniową.
- 4. Okno wyjściowe zabiegu elektroterapii pokazuje dodatkowy symbol przyssawek próżniowych

S, gdy jednostka vacuum jest przykładana do tego kanału.

- W celu użycia elektrod tradycyjnych, zmień pozycje jednego lub obu kanałów próżniowych A i B na Off.
- 6. Przełączenie pompy próżniowej w pozycję OFF NIE zmienia ustawienia parametrów obu kanałów próżniowych A i B. Jednak elektroterapia jest wykonywana automatycznie za pomocą tradycyjnych kabli do elektroterapii.

Uwaga:

- Zaleca się, aby wszystkie cztery węże i przyssawki elektrod próżniowych były podłączone do modułu terapii podciśnieniowej vacuum.
- Przyssawki posiadają automatyczne zawory odcinające je, gdy wiszą swobodnie.

 W przeciwnym razie pompa próżniowa działałaby w sposób ciągły i niemożliwe byłoby osiągnięcie wyższych poziomów, gdy jednostka vacuum byłaby przyłożona do jednego kanału, podczas gdy drugi obwód byłby nadal otwarty.

4.11.3 Ustawienia parametrów Vacuum

Ciśnienie robocze

Procedura

- 1. Wybierz Elektroterapię.
- Naciśnij przycisk , aby uzyskać dostęp do parametrów jednostki vacuum.
- 3. Włącz wybrane kanały próżniowe i pompę próżniową.
- 4. Wybierz ciśnienie robocze.
- 5. Używając przycisków i + dostosuj poziom zasysania.
- Przy wyglądzie ekranu imitującym deskę rozdzielczą ciśnienie robocze (wartość w hPa) pokazane jest w okręgu. Wybierz żądany zakres i dostosuj za pomocą przycisków - i +.

Tryb pracy i efekt masażu

Procedura

- 1. Naciśnij przycisk , aby uzyskać dostęp do parametrów jednostki vacuum.
- 2. Wybierz między ciągłym a pulsacyjnym trybem pracy.
- Przy zasysaniu pulsującym, możliwe jest wybranie efektu masażu, aby podnieść komfort zabiegu dla pacjenta.
- Przy wyglądzie ekranu imitującym deskę rozdzielczą oba parametry pokazane są w półokręgach.
 Dokonaj wyboru poprzez bezpośredni wybór odpowiedniej ikony.

4.11.4 Użycie modułu do terapii podciśnieniowej Vacuum

Rozpoczęcie zabiegu

Procedura

- Umieść elektrody próżniowe na części ciała pacjenta, poddawanej leczeniu. Podciśnienie powoduje, iż elektrody pozostają na miejscu. Zbyt duże ssanie może jednak powodować dyskomfort pacjenta. W tym celu zmień ciśnienie robocze lub skorzystaj z pulsacyjnego trybu pracy w połączeniu z efektem masażu. Patrz § 4.11.3.
- 2. Przekręć pokrętło natężenia, aby rozpocząć zabieg. Ustaw napięcie.

 Sprawdź reakcję pacjenta oraz działanie zabiegu. Powyższą czynność powtarzaj regularnie w czasie zabiegu.

Wyłącz pompę próżniową po zakończeniu zabiegu

Uwaga:

W niektórych krajach wymagane jest, aby pompa próżniowa wyłączała się automatycznie po zakończeniu leczenia.

Procedura

- Dokonaj wyboru za pomocą parametru Wyłącz pompę po zakończeniu zabiegu (Switch off pump @ end).
- Jeśli zaznaczona opcja to ,,tak" , pompa próżniowa zostanie natychmiast wyłączona po zakończeniu leczenia.

Uwaga: parametr pompy próżniowej jest automatycznie przełączany na OFF, w celu zachowania spójności.

- Jeśli zaznaczona opcja to "nie" pompa próżniowa nie wyłączy się za zakończeniu leczenia. Ciśnienie robocze zmniejszy się automatycznie do 50 hPa w przeciągu 5 minut po zakończeniu zabiegu. Zapobiega to podrażnieniu skóry pacjenta przez długotrwałe narażenie jej na zasysanie.
- Zdejmij przyssawki wkładając palec pod ich krawędź. Zdjęcie przyssawek jest możliwe natychmiast po wyłączeniu pompy próżniowej.

4.11.5 Zbiornik wody jest pełny

Procedura

- Pojawienie się ikony na ekranie głównym, informuje o tym, że zbiornik jest pełny. Dokończ zabieg. Po wyłączeniu terapii podciśnieniowej, nie ma możliwości jej ponownego uruchomienia.
- 2. Opróżnij zbiornik wody wężem próżniowym. Możesz rozpocząć terapię podciśnieniową.

Seria 400

5. Kontrola i konserwacja

5.1 Kontrola

	Element	Kontrola	Częstotliwość
\mathbf{v}	Kabel elektrod i elektrody	Uszkodzenie, stan izolacji	Przynajmniej 1 x na miesiąc
⋎ ▲	Kabel elektrod, elektrody i węże spustowe	Przewodność Patrz § 4.10.5 - § 4.10.7	Przynajmniej 1 x na tydzień
• •	Elektrody próżniowe	Czyszczenie. Patrz § 5.2.4.	Po każdym zabiegu
<u> </u>	podkłady do elektrod próżniowych	Czyszczenie. Patrz § 5.2.5.	Po każdym zabiegu
	Węże próżniowe i zbiorniki wodne	Czyszczenie. Patrz § 5.2.10.	Raz w tygodniu
•///		Wgięcia, pęknięcia lub inne uszkodzenia	Przynajmniej 1 x na miesiąc
Głowica ultradźwiękowa	Test głowicy ultradźwiękowej. Patrz 5.1.1.	Przy nieprawidłowym działaniu lub przynajmniej 1 x w roku	
ッ	Kabel głowicy ultradźwiękowej	Uszkodzenie, stan bolców oraz wtyczki (czy są proste)	Przynajmniej 1 x na miesiąc
		Wgięcia, pęknięcia lub inne uszkodzenia	Przynajmniej 1 x na miesiąc
*	Sonda laserowa	Kontrola sondy laserowej. Patrz §4.6.4 oraz §4.10.8.	Codziennie
-**	Kabel sondy laserowej	Uszkodzenie, stan bolców oraz wtyczki (czy są proste)	Przynajmniej 1 x na miesiąc
	Sprzęt	Kontrola bezpieczeństwa technicznego. Patrz§5.1.2.	Przynajmniej 1 x na miesiąc

5.1.1 Test głowicy ultradźwiękowej

Procedura

- 1. Wybierz terapię ultradźwiękową i połącz głowicę ultradźwiękową do urządzenia.
- Trzymając głowicę zwiększ intensywność do 1.0 W/cm² Sprawdź czy:
- a) Wartość Ppk utrzymuję się na granicy 0,00 W.
 - b) Wykres słupkowy kontaktu głowicy wskazuje 000.
 - c) Diody LED na głowicy migają.
 - Umieść głowicę ultradźwiękową w misce z wodą. Intensywność powinna być nadal wynosić 1.0 W/cm². Sprawdź czy:
 - a) Na ekranie kanału wzrasta wartość Ppk do wartości równej to Iset x ERA.
 - b) Wykres słupkowy kontaktu głowicy wskazuje
 - c) Diody LED na głowicy są włączone.
 - Skontaktuj się z przedstawicielem firmy GymnaUniphy w Polsce, jeśli zauważysz jakiekolwiek nieprawidłowości.

5.1.2 Kontrola bezpieczeństwa technicznego

Dyrektywa Komisji Europejskiej (93/42/EEG), dotycząca sprzętu medycznego dopuszcza stosowanie tylko bezpiecznych urządzeń medycznych. Zaleca również dokonywanie corocznych badań bezpieczeństwa aparatów. Jeśli zarządzenia danego kraju są inne i zalecają częstsze badanie sprzętu, użytkownik musi podporządkować się do tych zarządzeń.

Informacja:

Zarówno aparaty jak i akcesoria mogą być otwierane jedynie przez serwisantów autoryzowanych przez GymnaUniphy N.V.

Badanie mogą przeprowadzać tylko wykwalifikowane osoby.

Punkty badania

Badanie obejmuje następujące testy:

Test 1: Ogólny: Ocena wizualna i sprawdzenie działania poszczególnych funkcji.

Test 2: Elektroterapia.

Test 3: Terapia ultradźwiękowa

Test 4: Laseroterapia

Test 5: Badanie bezpieczeństwa elektrycznego: pomiar uziomowego prądu upływu i prądu upływu pacjenta zgodnie z normą IEC 62353.

Wynik badania

- Wyniki badań muszą być zaprotokołowane. W tym celu można wykorzystać blankiet raportu z badań zamieszczony w dodatku. Patrz §8.5.
- 2. Użytkownik może go skopiować.
- 3. Wypełnij skopiowany raport.
- 4. Wypełnione raporty należy przechowywać, co najmniej przez 10 lat.

Badania są zakończone, jeśli urządzenie przeszło wszystkie wyżej wymienione punkty. Wszelkie usterki należy naprawić przed ponownym uruchomieniem aparatu. Porównując zapisane wartości pomiarów z poprzednimi pomiarami, możliwe jest stwierdzenie wolno pojawiających się odchyleń.

5.2 Konserwacja

Element	Konserwacja	Częstotliwość
Jednostka sterująca	Czyszczenie. Patrz §5.2.1 oraz 5.2.2.	Zgodnie z wymaganiami
Elektrody (silikonowe, metalowe oraz przyssawki próżniowe)	Czyszczenie. Patrz § <i>5.2.3 i</i> § 5.2.4	Po każdym zabiegu
Podkłady do elektrod próżniowych	Czyszczenie. Patrz §5.2.5.	Po każdym zabiegu
Taśmy mocujące	Czyszczenie. Patrz §5.2.6.	Taśmy mocujące
Elektrody dopochwowa, doodbytnicza i analna	Czyszczenie i dezynfekcja. Patrz §5.2.7.	Po każdym użyciu
Głowica ultradźwiękowa	Czyszczenie. Patrz § <i>5.2.8</i> .	Po każdym użyciu
Sonda laserowa	Czyszczenie. Patrz § <i>5.2.9</i> .	Po każdym użyciu

Uwaga:

Akcesoria, które mają bezpośredni kontakt z ciałem pacjenta muszą być wymyte w czystej wodzie po wcześniejszej dezynfekcji, która ma zapobiec reakcjom alergicznym.

5.2.1 Czyszczenie serii 400 i modułu do terapii podciśnieniowej

Uwaga: Pod żadnym pozorem nie sterylizuj jednostki sterującej!

Procedura

- 1. Wytrzyj kurz suchą szmatką.
 - 2. W razie potrzeby usuń plamy lub brud wilgotną szmatką.
- 3. W razie potrzeby wyczyść urządzenie nieagresywnym roztworem mydła lub bezalkoholowym roztworem do dezynfekcji lub innym środkiem odpowiednim do dezynfekcji powierzchni, który nie uszkodzi materiału (pokrywa, obudowa, pokrętła: wykonane z lakierowanej blachy). W razie wątpliwości należy zapoznać się z listą środków dezynfekujących zalecanych przez producenta.

Uwaga: Nie używaj środków na bazie chlorków, ponieważ mogą one uszkodzić plastikowe części urządzenia.

5.2.2 Czyszczenie ekranu dotykowego

Uwaga: Zastosowanie niewłaściwych środków czyszczących może spowodować uszkodzenie optyczne panelu dotykowego i / lub uszkodzenie funkcjonalności urządzenia.

- Środek czyszczący nie może być ani kwaśny ani zasadowy (neutralne pH)
- Nie należy używać ściernych środków czyszczących
- Nie należy używać organicznych substancji chemicznych, takich jak: rozcieńczalnik do farb, aceton, toluen, ksylen, alkohol propylowy lub izopropylowy lub nafta
- Do czyszczenia ekranu dotykowego użyj ściereczki z mikrofibry. Ściereczkę można stosować na sucho lub lekko zwilżoną środkiem czyszczącym
- Nie nakładaj środka czyszczącego na ekran dotykowy, lecz na ściereczkę
- Używaj delikatnie zwilżonej ściereczki (nie mokrej)

Procedura

1. Jeśli używany jest środek czyszczący, delikatnie zwilż ściereczkę z mikrofibry środkiem do czyszczenia.

2. Delikatnie wytrzyj powierzchnię urządzenia ściereczką z mikrofibry

5.2.3 Czyszczenie elektrod

Procedura

- 1. Przemyj elektrody w roztworze wody z mydłem lub w 70% roztworze alkoholu.
- 2. Dokładnie spłucz elektrody wodą.
- 3. Wysusz elektrody.

5.2.4 Czyszczenie elektrod próżniowych

Procedura

- 1. Przemyj elektrody w roztworze wody z mydłem lub w 70% roztworze alkoholu.
- 2. Dokładnie spłucz elektrody wodą.
- 3. Jeśli obecne, usuń osady wapniowe.
- 4. Sprawdź pod kątem obecności brudu i osadów wapniowych. Usuń je jeśli są obecne.
- 5. Dokładnie wysusz elektrody próżniowe.

5.2.5 Czyszczenie podkładów pod elektrody

Procedura

- 1. Dokładnie wypłucz podkłady pod elektrody w wodzie lub w 70% roztworze alkoholu.
- 2. Dokładnie spłucz podkłady lekko zasoloną zdemineralizowaną wodą w celu poprawy ich przewodności.
- 3. Wysusz podkłady.

5.2.6 Czyszczenie taśm mocujących

Procedura

- 1. Dokładnie wypłucz podkłady pod elektrody w wodzie lub w 70% roztworze alkoholu.
- 2. Dokładnie spłucz taśmy wodą.
- 3. Wysusz taśmy.

5.2.7 Czyszczenie i dezynfekcja elektrod: dopochwowej, doodbytniczej i analnej.

Biorąc pod uwagę bardzo personalny i intymny charakter tych zabiegów,

elektrody specjalne mogą być używane tylko przez jednego pacjenta.

• Nigdy nie dezynfekuj elektrod specjalnych w autoklawie. Elektrody mogą zostać uszkodzone w przypadku działania skrajnych temperatur.

Bezpośrednio po zabiegu

Procedura

- 1. Dokładnie umyj elektrodę w roztworze wody z mydłem.
- Przynajmniej na 30 minut umieść elektrodę w 1% roztworze HAC lub w 70% roztworze alkoholu.

• Przeczytaj instrukcję zamieszczoną na prospekcie umieszczonym w opakowaniu HAC.

- Upewnij się czy wtyczka elektrody nie została zamoczona w roztworze HAC.
- 3. Wytrzyj elektrodę czystym ręcznikiem.
- 4. Umieść elektrodę w plastikowej torbie opatrzonej nazwiskiem pacjenta.

Przed ponownym użyciem elektrody

Procedura

- 1. Dokładnie umyj elektrodę w roztworze wody z mydłem.
- 2. Rozprowadź po elektrodzie żel antyseptyczny. Patrz §4.3.2.

5.2.8 Czyszczenie głowicy ultradźwiękowej.

Procedura

- 1. Wyczyść głowicę ultradźwiękową lekko zwilżoną miękką szmatką.
- 2. Zdezynfekuj powierzchnię zabiegową przecierając ją bawełnianą szmatką namoczoną w 10% roztworze HAC
- 3. Dokładnie spłucz głowicę ultradźwiękową czystą wodą.

5.2.9 Czyszczenie sondy laserowej

- Sonda laserowa nie jest wodoodporna.
- Nie zarysuj szyby apertury.

Procedura

- 1. Wyczyść sondę laserową lekko zwilżoną miękką ściereczką.
- 2. Zdezynfekuj powierzchnię leczenia wacikiem nasączonym 10% roztworem HAC.

5.2.10 Czyszczenie węża próżniowego i zbiornika wodnego

Procedura

- 1. Opróżnij zbiornik wodny przy użyciu węża próżniowego.
- 2. Przygotuj pojemnik z maks. 180 ml 70% roztworu alkoholu.
- 3. Podłącz węże próżniowe.
- 4. Włóż końce węży próżniowych do przygotowanego 70% roztworu alkoholu.
- 5. Włącz program Elektroterapii i naciśnij , aby włączyć pompę próżniową

i obydwa kanały.

6. Zasysaj płyn, do momentu aż wyświetli się następujący komunikat: "Zbiornik wody pełny".

- 7. Wyłącz pompę próżniową.
- 8. Opróżnij zbiornik wodny.

Powtórz krok 2 i 8, lecz tym razem wlej czystą wodę.

Seria 400

6. Usterki, serwis i gwarancja

6.1 Usterki

Element	Problem	Rozwiązanie
Seria 400	Nie można włączyć urządzenia	Patrz §6.1.1.
	Urządzenie nie reaguje na komendy lub pojawia się raport o błędzie	Patrz §6.1.2.
	Na ekranie pojawia się inny język	Zmień język. Patrz §4.10.1 i 4.10.2.
Elektrody próżniowe	Zanieczyszczenie przez jonizację	Patrz §6.1.3.
Podkłady pod elektrody	Pomarszczenie	Zmień podkłady
	Złe przewodzenie	Zmień podkłady

6.1.1 Nie można włączyć urządzenia

Procedura

- 1. Sprawdź czy jest zasilanie.
- 2. Sprawdź czy włącznik sieciowy jest włączony pozycja "I".
- 3. Sprawdź czy kabel zasilający nie jest uszkodzony. Jeśli to konieczne wymień kabel.
- 4. Jeśli w dalszym ciągu nie można włączyć urządzenia, skontaktuj się z serwisem.

6.1.2 Urządzenie nie reaguje na komendy lub pojawia się raport o błędzie

Wewnętrzny system kontrolny urządzenia wykrył usterkę. Nie możesz kontynuować pracy. Na ekranie zazwyczaj pojawia się instrukcja postępowania.

Procedura

1) Odłącz aparat od pacjenta.

- 2) Wyłącz aparat włącznikiem sieciowym pozycja "O".
- 3) Odczekaj 5 sekund i włącz ponownie włącznik sieciowy aparatu pozycja "I".
- 4) Jeśli ponownie pojawi się raport o błędzie, skontaktuj się z serwisem.

6.1.3 Usuń zanieczyszczenia z elektrod próżniowych

Procedura

1. Wyczyść elektrody próżniowe. Patrz §5.2.4.

2. Użyj wełny stalowej lub papieru ściernego do metalu z drobnymi ziarnami ("P 400" lub wyższy), aby usunąć zanieczyszczenia.

3. Wymień elektrody próżniowe, jeśli zanieczyszczenie jest nadal obecne.

6.2 Serwis

Uwaga:

 Jedynie serwisanci autoryzowani przez GymnaUniphy N.V. mogą otwierać aparat oraz akcesoria, w celu dokonania naprawy. Aparat nie posiada żadnych części, które mogą być wymieniane przez użytkownika.

• Jeśli jest to możliwe, zanim skontaktujesz się z serwisem, wejdź do ekranu Ustawienia systemu (System settings). Patrz §4.10.2.

Lokalny przedstawiciel firmy GymnaUniphy prowadzi serwis aparatu oraz udziela gwarancji. Określa on również warunki dostarczenia sprzętu. Przedstawiciel firmy GymnaUniphy, odpłatnie, na twoją prośbę może dostarczyć diagramy, akcesoria dodatkowe, instrukcję kalibracji i części zapasowe.

6.3 Gwarancja

GymnaUniphy oraz lokalni przedstawiciele GymnaUniphy deklarują, że ponoszą odpowiedzialność za prawidłowe funkcjonowanie aparatu w przypadku, gdy:

- Wszystkie naprawy, modyfikacje, rozszerzenia lub dostosowania są wykonywane przez autoryzowanych serwisantów;

- Instalacja elektryczna odpowiedniego miejsca jest zgodna z obowiązującymi normami;

 - Urządzenie jest obsługiwane tylko przez odpowiednio wykwalifikowany personel zgodnie z instrukcją obsługi;

- Urządzenie jest wykorzystywane tylko do celów, do których zostało skonstruowane;
- Konserwacja urządzenia przeprowadzana jest regularnie, zgodnie z instrukcją. Patrz § 5.2;
- Nie została przekroczona tzw. żywotność urządzenia;
- Użytkownik przestrzega prawnych regulacji dotyczących użytkowania tego urządzenia

Seria 400

Okres gwarancji urządzenia wynosi 2 (dwa) lata, licząc od daty zakupu. Mianem daty zakupu określa się datę widniejącą na fakturze zakupu. Gwarancja ta obejmuje wszystkie wady materiałowe i produkcyjne. Wyposażenie szybko zużywające się, tzn.: podkłady pod elektrody, elektrody samoprzylepne i elektrody silikonowe nie podlegają niniejszemu okresowi gwarancji.

Powyższy okres gwarancji nie będzie obowiązywał, w przypadku napraw lub defektów spowodowanych przez:

- Niewłaściwe użytkowanie sprzętu,

- Niewłaściwą interpretację lub niedokładne stosowanie się do instrukcji obsługi,

- Nieostrożne lub niewłaściwe użycie,

 Jako konsekwencja konserwacji lub napraw przeprowadzanych przez osoby lub instytucje niemające autoryzacji wytwórca;

6.4 Techniczna żywotność

Przewidywaną długość życia aparatu określa się na 10 lat, licząc od daty produkcji – zobacz tabliczkę znamionową na urządzeniu. GymnaUniphy zapewnia serwis urządzenia, części zamienne i akcesoria przez okres 10 lat od daty produkcji sprzętu.

Seria 400

7 Informacje techniczne

7.1 Ogólne

Wymiary serii 400	
(szer. × wys. × głęb.)	360 x 285 x 260 mm
Wymiary aparatu Vaco 400	
(szer. × wys. × głęb.)	267 x 95 x 270 mm
Waga	5,15 kg
Waga z uwzględnieniem akcesoriów	7,85 kg
Waga aparatu Vaco 400 z uwzględnieniem akcesoriów	3 kg
Zasilanie	100 - 240 VAC. 50 - 60 Hz
Maksymalny pobór mocy podczas pracy	100 W
Klasa bezpieczeństwa	Urządzenie zostało zaprojektowane zgodnie z następującymi normami: EN 60601-1: 1990 + A1: 1993 + A2: 1995 / IEC 60601-1: 1988 + A1: 1991 + A2: 1995. To wydanie normy klasyfikuje urządzenia z podwójną lub wzmocnioną izolacją części zasilającej i bez uziemienia ochronnego do klasy II. Elektrycznie chronione urządzenie klasy II może mieć funkcjonalny zacisk uziemienia. Jest to kołek uziemienia gniazda wejściowego, oznaczony symbolem , aby odróżnić go od ochronnego zacisku uziemienia. Podłączenie tego pinu do chronionego zacisku uziemienia gniazdka sieciowego lub innego uziemionego zacisku jest konieczne, aby osiągnąć wymaganą wydajność EMC.

7.3 Elektroterapia

7.3.1 Ogólne

Izolacja	Typ BF (pływająca część aplikacyjna)
Czas zabiegu	0 - 60 min.
Ograniczenie wartości prądu	Najmniejsza wartość:
	-150% nastawionej wartości, lub:
	- 110% max. wartości wybranego kształtu prądu
Dokładność	Nastawiona wartość prądu w mA przy 500 $\Omega~$ - typowo +/- 10%
Polaryzacja	Czerwony-, czerwony+ i polaryzacja zmienna

7.2.2 Kształty prądu

Prądy jednokierunkowe	
 Prąd stały 	
 Jonoforeza – prąd stały 	
Intensywność CC	0 - 80 m przy 300 do 1000 Ω
 Impuls prostokątny 	
• Prąd 2 - 5 (Ultra Reiz)	
 Impuls trójkątny 	
Czas impulsu	0,1 ms - 6 s
Przerwa pomiędzy impulsami	1 ms - 6 s
Natężenie - opcja CC	0 - 80 m przy 300 do 1000 Ω
Natężenie – opcja CV	0 - 80 Vpeak
 Jonoforeza - MF stały 	
• MF stały	
Natężenie – opcja CC	0 - 80 m przy 300 do 1000 Ω
Częstotliwość impulsów	10 kHz
Cykl pracy	80%

Seria 400

Prądy diadynamiczne

• MF, RS, DF, CP, LP Natężenie – opcja CC Natężenie – opcja CV Prądy izodynamiczne (CP, LP) Parametry expert Czas MF Czas DF ISO

Prądy TENS

- TENS konwencjonalny
- TENS niskoczęstotliwościowy
- TENS wysokoczęstotliwościowy Czas impulsu

Kształt impulsu Częstotliwość (bazowa) Częstotliwość maks. Czas wzrostu częstotliwości Czas podtrzymania częstotliwości Czas spadku częstotliwości Natężenie – opcja CC

TENS modulowany
 Patrz prądy TENS, za wyjątkiem:
 Częstotliwość impulsów

Natężenie – opcja CV

TENS uderzeniowy
 Patrz prądy TENS, za wyjątkiem:
 Częstotliwość impulsów
 Częstotliwość uderzeń

0 - 80 m przy 300 do 1000 Ω 0 - 80 Vpeak włączone/wyłączone

1 - 100 s 1 - 100 s włączone/wyłączone

10 - 900 μs symetryczny, asymetryczny 1 - 500 Hz 1 - 500 Hz 0 - 100 s 0 - 100 s 0 - 100 s 0 - 120 m przy 300 do 1000 Ω 0 - 120 V_{peak}

1 - 500 Hz, z automatyczną częstotliwością zmieniającą się o +/- 35% ustawionej częstotliwości impulsów

20 - 500 Hz 1 - 10 Hz

Prądy NMES

• Prąd o przebiegu monofazowym, prostokątnym

 Prąd o przebiegu monofazowym, trójkątnym 	
Czas impulsu	0,1 - 5 ms
Częstotliwość impulsów	1 - 150 Hz
Natężenie – opcja CC	0 - 80 m przy 300 do 1000 Ω
Natężenie – opcja CV	0 - 80 Vpeak

- Przebieg bifazowy
- Przebieg z przerwą między impulsami (przerwa między impulsami o polaryzacji dodatniej i ujemnej wynosi 100 μs)

Czas impulsu	10 - 900 μs
Częstotliwość impulsów	1 - 500 Hz
Natężenie - opcja CC	0 - 120 m przy 300 do 1000 Ω
Natężenie - opcja CV	0 - 120 Vpeak
• Prądy Kotza	
Natężenie opcja CC	0 - 100 m przy 300 do 1000 Ω
Natężenie - opcja CV	0 - 100 Vpeak
Częstotliwość uderzeń	1 - 100 Hz
Częstotliwość fali nośnej	2 - 10 kHz
 Przebieg 2-biegunowego prądu średnie częstotliwości 	j
 Przebieg izopolarnego pola wektorowego Natężenie - opcja CC 	0 - 100 m przy 300 do 1000 Ω
Natężenie - opcja CV	0 - 100 Vpeak
Częstotliwość fali nośnej	2 - 10 kHz
Częstotliwość AM	1 - 200 Hz
Parametry rozkładu przebiegu (Expert) dla prądóv NMES	V
Czas trwania serii (Wł.)	1 - 100 s
Czas wyłączenia (OFF)	0 - 100 s
Czas trwania przerwy między seriami	0 - 100 s
Czas wzrostu	0 - 100 s
Czas spadku	0 - 100 s
Tryby specjalne	OFF. REST. ON2. Zmiana częstotliwości. Stymulacja ręczna.
Kanały przemienne	ON/OFF /Synchroniczny (nie dla izopolarnego pola wektorowego)

Amplituda On2	1 - 100%
Amplituda w spoczynku	1 - 100%
Prądy interferencyjne	
• 2-biegunowy prąd średniej częstotliwości	
Izopolarne pole wektorowe	
Prąd interferencyjny	
Natężenie - opcja CC	0 - 100 m przy 300 do 1000 Ω
Natężenie – opcja CV	0 - 100 Vpeak
Częstotliwość fali nośnej	2 - 10 kHz
Częstotliwość AM min.	0 - 200 Hz
Częstotliwość AM max.	0 - 400 Hz
Zmiana częstotliwości	0/1/0, 1/5/1, 6/0/6, 12/0/12
 Dwubiegunowe pole wektorowe 	
Patrz 2- biegunowy prąd średniej częstotliwości i i Tryb rotacji AUTO:	zopolarne pole wektorowe
Czas rotacji	0 - 20 s
Tryb rotacji RĘCZNY:	
Kąt rotacji	0 - 350°
Kąt segmentu	0 - 45°
Czas segmentu	0 - 10 s
Mikroprądy	
Mikroprądy ciągłe	
Mikroprądy uderzeniowe	
Mikroprądy modulowane	
Natężenie – opcja CC	0.1 μA - 1 mA przy 300 do 1000 Ω
Częstotliwość min & maks.	0.1 Hz- 200 Hz
Czas impulsu min & maks.	1.0 ms - 1.0 s
Częstotliwość impulsów	0,1 Hz - 1 kHz

Prądy wysokiej	częstotliwości
----------------	----------------

 Ciągłe 	
----------------------------	--

Częstotliwość min.	1 - 200 Hz
Częstotliwość maks.	1 - 200 Hz
Natężenie	0 - 500 V
Uderzeniowe	
Częstotliwość impulsów	1 - 200 Hz
Czas (Expert)	0 - 100 s
Natężenie	0 - 500 V
Programy diagnostyczne:	Reobaza i chronaksja. Reobaza i AQ (współczynnik akomodacji). Krzywa I/t prostokątna, Krzywa I/t trójkątna, Krzywa I/t prostokątna + trójkątna.
Natężenie opcja CC	0 - 80 m przy 300 do 1000 Ω z reobazą maks.40 mÂ
Zmienne parametry dla ustawienia chronaksji:	
Czas impulsu	0.1 - 100 ms
Zmienne parametry dla ustawienia krzywej I/t:	
Czas impulsu, 17 kroków pomiędzy:	0,05 - 1000 ms
Tryb nagrywania	automatyczny / ręczny

Uwaga:

Specyficzny dla terapii skojarzonej; terapia skojarzona elektroterapii i terapii ultradźwiękowej.

W przypadku programów terapii skojarzonej obowiązują zarówno wartości parametrów wybranego prądu, jak i parametry terapii ultradźwiękowej.

7.3 Moduł do terapii podciśnieniowej Vacuum

Pojemność zbiornika wodnego	± 180 ml
Ciśnienie robocze - ciągły	50 - 320 hPa
Ciśnienie robocze - pulsacyjny Efekt masażu (wzrost podczas impulsu względem 90% ustawionej wartości podstawowe)	50 - 480 hPa
	0: 1.00 x (ciągły)
	1: 1.20 x
	2: 1.35 x
	3: 1.50 x
Rytm	1.5/1.5 - 1.5/3.0 - 1.5/4.5 s
	(włączony/wyłączony)

7.4 Terapia ultradźwiękowa

7.4.1 Ogólne

Izolacja Moc szczytowa	Typ BF 0 - 2 W/cm ² . cykl pracy= 100% 0 - 3 W/cm ² . cykl pracy < 100%
Dokładność natężenia	Nastawiona wartość prądu w mA typowo +/- 10%
Czas zabiegu	0 - 30 min.
Odchylenie zegara	< 0.5%
Częstotliwość impulsów	100 Hz
Typ modulacji	CW (prostokątny on/off)
Powtarzalność impulsu	10 ms

Współczynnik wypełnienia	100	50	40	30	20	10	%
Czas impulsu	8	5	4	3	2	1	ms
Stosunek p _{tm} - p	1	2	2.50	3.33	5	10	

7.4.2 Współczynnik wypełnienia i długość trwania impulsu

7.4.3 Głowice ultradźwiękowe

Głowica ultradźwiękowa, model 404						
Częstotliwość ultradźwięków	1.0	3.2	MHz			
Moc wyjściowa	8	8.4	W			
Efektywne natężenie napięcia wyjściowego	2.0	2.0	W/cm ²			
ERA (Effective Radiating Area)	4	4.2	cm ²			
BNR (Beam Non-uniform Ratio)	4.5	7.0				
Max. gęstość wiązki	9.0	14.0	W/cm ²			
Typ wiązki	Spójna	Kolimacyjna				
Głowica ultradźwiękowa, model 401	Głowica ultradźwiękowa, model 401					
Częstotliwość ultradźwięków	1.0	3.2	MHz			
Moc wyjściowa	2.6	2.2	w			
Efektywne natężenie napięcia wyjściowego	2.0	2.0	W/cm ²			
ERA (Effective Radiating Area)	1.3	1.1	cm ²			
BNR (Beam Non-uniform Ratio)	6.8	3.1				
Max. gęstość wiązki	13.6	6.2	W/cm ²			
Typ wiązki (beam type)	Spójna	Kolimacyjna				

7.5 Laseroterapia

7.5.1 Ogólne

Izolacja	Тур ВF
Klasyfikacja	Produkt Klasy 3B

7.5.2 Monoprobe: Mono400

Ilość diod laserowych Nominalna odległość zagrożenia dla narządu wzroku	1
Długość fali	214 mm 905 nm
Energia / impuls	2.39 µJ
Maksymalna wydajność	13.5 W
Maksymalna średnia moc	70.5 mW
Częstotliwość impulsu	2 - 30000 Hz
Szerokość impulsu przy 50% mocy szczytowej	155 ns
Powierzchnia wiązki	12 mm ²
Rozbieżność wiązki	Podwójna Tryb 10° i 45°

7.5.3 Clusterprobe: model Quad400

Ilość diod laserowych	4
Nominalna odległość zagrożenia dla narządu wzroku	95 mm
Długość fali	905 nm
Energia / impuls	10.1 µJ
Maksymalna wydajność	4 x 18 W
Maksymalna średnia moc	50.5 mW
Częstotliwość impulsu	2 - 5000 Hz
Szerokość impulsu przy 50% mocy szczytowej	145 ns
Powierzchnia wiązki	$4 \text{ x} 5 \text{ mm}^2$
Rozbieżność wiązki kompozytowej	21°

7.6 Warunki otoczenia

Temperatura	+10 °C do +40 °C
Wilgotność względna	30% do 75%
Ciśnienie atmosferyczne	700 hPa do 1060 hPa

7.7 Transport i przechowywanie

Waga transportowa urządzeń serii 400	8.4 kg
Waga transportowa aparatu Vaco 400	4.1 kg
Temperatura przechowywania	-20 °C to +60 °C
Wilgotność względna Ciśnienie atmosferyczne	10% do 100%, łącznie z kondensacją 200 hPa do 1060 hPa
Klasyfikacja transportowa	Pojedyncze opakowania, pocztą

Warunki transportu i przechowywania odnoszą się do urządzenia umieszczonego w oryginalnym opakowaniu.

7.8 Akcesoria standardowe

Numery katalogowe akcesoriów mogą z czasem ulec zmianie. Sprawdź właściwe numery katalogowe w najnowszym arkuszu danych lub zapytaj sprzedawcę. Rysunki mają jedynie charakter orientacyjny.

7.8.1 Ogólne

	llość	Opis	Nr katalogowy
	1	Przewód zasilający*	100.689
a the second sec	1	VAS (Wizualna Skala Bólu)	115.684
	1	Długopis do ekranu dotykowego Gymna	340.505
\bigcirc	1	Instrukcja bezpieczeństwa	323.011
-	1	Przewodnik szybkiego startu Gymna 400	362.505
	1	Instrukcja obsługi na płycie CD-ROM	362.516

Seria 400

		2	Przycisk obrotowy, srebrny **	319 025
	* Przewód posiada wtyczkę typu CEE 7/7. Dla Państw, które posiadają inne przyłącza zasilar			rzyłącza zasilania,
	dostarczany jest przewód zasilający z właściwą wtyczką.			
** Przyciski obrotowe są wymienne.				
	Wskazówka:			
	Ostrożnie unieś zamontowany przycisk za pomocą płaskiej linijki. Delikatnie umieść drugi przycisk na			ć drugi przycisk na
	wale obrotowym. Sprawdź, czy przycisk obraca się łatwo i bez oporu.			

7.8.2 Standardowe akcesoria – Elektroterapia

	llość	Opis	Nr katalogowy
\mathcal{Q}°	2	Dwużyłowy kabel elektrod	340.406
Q	2	Elektrody silikonowe 6 x 8 cm, 2mm (2 pary)	340.468
\bigcirc	1	Podkład pod elektrodę 6 x 8 cm (4 sztuki)	100.658
	4	Pasek mocujący – 5 x 60 cm	108.935
ß	1	Złączka testowa F/F, 2 mm	330.803

7.8.3 Standardowe akcesoria – Terapia ultradźwiękowa

	llość	Opis	Nr katalogowy
<i>C</i> D	1	Głowica ultradźwiękowa, 1/3 MHz – ERA 4 cm2 z uchwytem	360.114
Ĉ	1	Żel kontaktowy, 500 ml	341.088
<i>S</i> D	1	Głowica ultradźwiękowa, 1/3 MHz – ERA 1 cm2 z uchwytem***	360.111
***W standardzie dla aparatu Pulson 400, opcjonalnie dla aparatu Combi 400			

	llość	Opis	Nr katalogowy
	1	Przewód łączący: urządzenia do elektroterapii – zasilanie i podłączenie	318.167
	1	Przewód łączący: urządzenia do elektroterapii	318.164
Q°	1	Wąż próżniowy ciemnoszary (2 sztuki: czarna/czerwona złączka)	340.615
Q°	1	Wąż próżniowy jasnoszary (2 sztuki: czarna/czerwona złączka)	340.604
٢	2	Elektroda próżniowa 60 mm	340.626
	1	Podkład pod elektrody 60 mm	340.648

7.8.4 Standardowe akcesoria – Terapia podciśnieniowa

7.9 Akcesoria opcjonalne

Numery katalogowe akcesoriów mogą z czasem ulec zmianie. Sprawdź właściwe numery katalogowe w najnowszym arkuszu danych lub zapytaj sprzedawcę. Rysunki mają jedynie charakter orientacyjny. Niektóre z wyżej wymienionych akcesoriów mogły nie być licencjonowane zgodnie z prawem kanadyjskim lub nie zostały dopuszczone na rynek w Twoim kraju z innych powodów.

7.9.1 Akcesoria opcjonalne – Elektroterapia

llość	Opis	Nr katalogowy	
1	Elektroda dopochwowa Novatys gold	329.978	
1	Elektroda dopochwowa V2B+	330.594	
1	Elektroda dopochwowa Optima3	330.572	
1	Elektroda dopochwowa Perisize 4+	330.583	
1	Elektroda rektalna	112.166	
1	Elektroda doodbytnicza Analia	329.989	
1	Elektroda doodbytnicza Analys+	330.561	
	llość	Opis	Nr katalogowy
------------	-------	---	---------------
	1	Kabel adaptera 2 mm żeński na 4 mm męski (do podłączenia elektrody punktowej lub elektrody doodbytniczej)	340.428
P	4	Pasek mocujący – 5 x 30 cm	108.934
0	4	Pasek mocujący – 5 x 120 cm	108.936
\sim	2	Elektrody silikonowe 4 x 6 cm, 2 mm	340.446
\sim	2	Elektrody silikonowe 8 x 12 cm, 2 mm	340.481
\bigcirc	4	Pokrowiec Chamex na elektrodę 4 x 6 cm	100.657
	4	Pokrowiec Chamex na elektrodę 8 x 12 cm	100.659
D	4	Elektrody samoprzylepne 2,5 cm x 5 cm	326.810
S	4	Elektrody samoprzylepne 5 cm x 5 cm	326.821
Ø	4	Elektrody samoprzylepne 5 cm x 10 cm	326.832
D	4	Elektrody samoprzylepne, średnica 3 cm	326.799
N°	1	Elektroda punktowa o średnicy 15 mm z uchwytem i podkładem	114.142
\bigcirc	10	Podkłady pod elektrodę punktową	109.944

Rada: Zmieniaj elektrody co najmniej raz na sześć miesięcy.

	llość	Opis	Nr katalogowy		
<i>S</i> D	1	Głowica ultradźwiękowa, 1/3 MHz ERA 1 cm2 z uchwytem*	360.111		
Ô	1	Żel kontaktowy, pojemnik 5 l	341.099		
1 Pompka do pojemnika, 5 l 341.121					
* W standardzie dla aparatu Pulson 400, opcjonalnie dla aparatu Combi 400					

7.9.2 Akcesoria opcjonalne – Terapia ultradźwiękowa

7.9.3 Akcesoria opcjonalne - Laseroterapia

	llość	Opis	Nr katalogowy
Q	1	Monoprobe, model Mono400, z uchwytem	360.101
Q_{\sim}	1	Clusterprobe, model 1Quad400, z uchwytem	360.104
P	1	Okulary ochronne do lasera	339.592
	1	Zdalna blokada dla lasera	340.417

7.9.4 Akcesoria opcjonalne – Terapia podciśnieniowa

	llość	Opis	Nr katalogowy
٢	2	Elektroda próżniowa - 90mm	340.637
••••	4	Podkłady pod elektrody próżniowe - 90mm	114.687

7.9.5 Akcesoria opcjonalne - Mobile 400

llość	Opis	Nr katalogowy
1 Gymna Mobile 400		360.808
1	Zestaw przedłużaczy Vaco Mobile 400	360.819
1	Uchwyt Vaco Mobile 400	360.830

8. Dodatek

8.1 Leki do jonoforez

Lek	Działanie		Zastosowanie i postać leku	
Wapń (+)	Przeciwbólowe uspokajające	i	Zastosowanie: bóle pourazowe, skręcenia, zespoły algodystroficzne i neuralgie.	
Magnar	Dezesiuchólouro	ī	Zastasowania jak w nzwnadku wannia	
wagnez (+)	fibranolituarea	1	Zastosowanie: jak w przypauku wapnia.	
techine ()	Chlorothione	-	Zostosowania, blizny, zsosty skósna, przykusz, Dupustrona	
Jodyna (-)	Skierotyczne		zastosowanie. blizny, zrosty skorne, przykurcz bupuytrena,	
			Doctać laku: 1.2% roztvár jadku patasu	
Saliculars ()	Drzeciwrzenalne	-	Postac leku: 1-2% foziwor jouku polasu. Zastosowania: zanalania, akatatulan, zanalania, kaści, i, stawów	
Salicylari (*)	Fizeciwzapanie		zastosowanie, zapalenie okołożynie, zapalenie kości i stawów,	
			torahki	
			Postać leku: 2% roztwór salicylanu sodowego	
Prokaina i Lidokaina	Przeciwzanalne	- 1	Zastosowanie: tam gdzie konieczne jest wywołanie lokalnego	
(+)	Treconcopanie		znieczulenia, neuralgia nerwų tróidzielnego, np. w przypadkų	
(.)			ostrego zapalenia.	
			Postać leku: 2% roztwór.	
Histamina (+)	Wazodylatacyjne	i	Zastosowanie: zwyrodnieniowy i reumatyczny ból stawowy.	
	zwiększające		Maksymalny czas trwania jonoforezy: 3 min.	
	przepuszczalność		Dłuższy zabieg wywołuje reakcje alergiczne i bóle głowy.	
	naczyń		Postać leku: 0.2% roztwór dwuwęglanu.	
Coltramyl (+)	Miorelaksacyjne		Zastosowanie: przykurcze.	
			Postać leku: roztwór do 0.04%. 2 ml coltramylu (4 mg/ampułka),	
			należy rozpuścić w 8 ml wody destylowanej.	
Indocid (-)			Zastosowanie: choroby zapalne.	
			Postać leku: 1% roztwór. 50 mg liofilizowanego proszku należy	
			rozpuścić w 5 ml wody destylowanej.	
Voltaren (-)			Zastosowanie: choroby zapalne.	
			Postać leku: 0.75% roztwór. 3 ml (75 mg/ampułka) należy rozpuścić	
			w 7 ml wody destylowanej.	
Kwas octowy			Zastosowanie: rozpuszczenie warstw złogów powodowanych przez	
			kostniejące zapalenie mięśni i kostnienie okołostawowe.	
		_	Postać leku: 2% roztwór wodny.	

8.2 Diagnostyka – krzywa I/t

8.3 Ustawienia elektrody, głowicy i sondy laserowej

Wybierz terapię za pomocą listy wskazań, bądź Obszaru ciała, aby uzyskać informacje o umiejscowieniu elektrod.

8.3.1 Elektroterapia

Wybierz przycisk , aby uzyskać informację odnośnie prawidłowego umieszczenia elektrod. Liczby na ilustracji informują o dokładnym położeniu. Wybierz odpowiedni numer. Opis lokalizacji często tłumaczy się skrótami:

pnp	punkt nerwu obwodowego	snp	punkt nerwowy skóry
mnp	punkt nerwu ruchowego	mtp	punkt spustowy mięśniowo- powięziowy
n	nerw	nn	nerwy
m	mięsień	mm	układ mięśniowy
r	gałąź (nerwu)	rr	gałęzie (nerwu)
Decentele :	informacia.		

Pozostałe informacje:

Elektrody pokazane z tyłu są przezroczyste; ilustracje nie zawierają określonego rodzaju elektrod, które powinny być użyte; rozmiar pokazanych elektrod jest wyłącznie wskazaniem zalecanego rozmiaru; litery A i B zawierają zalecenia odnośnie wyboru kanału; symbole + i - zalecają polaryzację.

8.3.2 Jonoforeza

Naciśnij przycisk , aby wyświetlić metodę leczenia jonoforezą na ekranie.

8.3.3 Terapia ultradźwiękowa

Naciśnij przycisk wywalacy aby uzyskać informację o optymalnej lokalizacji dla umieszczenia głowicy.

8.3.4 Terapia skojarzona

Naciśnij przycisk , aby uzyskać informacje o prawidłowym umiejscowieniu głowicy ultradźwiękowej. Elektroda nie jest pokazana na ilustracji. Umieść elektrodę blisko głowicy.

8.3.5 Laseroterapia

Wybierz przycisk wybier

8.4 Dyrektywa dotycząca dostosowania elektromagnetycznego

Należy używać jedynie przewodów, elektrod i głowic ultradźwiękowych, których specyfikacja zawarta jest w niniejszej instrukcji obsługi. Patrz §7.8 i §7.9. Użycie innych akcesoriów może mieć negatywny wpływ na elektromagnetyczną kompatybilność urządzenia. Jeśli aparaty Combi serii 400 pracują w pobliżu innego urządzenia, musisz sprawdzić czy funkcjonują prawidłowo. Kolejne punkty zwierają informacje o właściwościach elektromagnetycznych urządzenia.

8.4.1 Informacja i deklaracje

Urządzenie serii 400 jest przeznaczone do użytku w środowisku elektromagnetycznym opisanym poniżej. Użytkownik lub odbiorca urządzenia powinien zapewnić odpowiednie warunki środowiskowe.

Rodzaj emisji	Podatność	Środowisko elektromagnetyczne -		
		wytyczne		
Emisja fal elektromagnetycznych CISPR 11	Grupa 1	Urządzenie wykorzystuje energię z zakresu fal radiowych (RF) tylko do swoich wewnętrznych funkcji. Ponieważ poziom emisji RF urządzenia ma bardzo niską wartość, nie ma ono wpływy na pracę innych, blisko umieszczonych, elektronicznych urządzeń.		
	Klasa B			
Emisja harmonicznych IEC 61000-3-3	Klasa B	Urządzenie jest przeznaczone do użytku we wszelkiego rodzaju firmach, instytucjach, itp., a także w środowisku domowym i może być podłączane bezpośrednio do publicznej sieci zasilającej niskiego napięcia.		
Ograniczanie wahań napięcia i migotania światła IEC 61000-3-3	W normie			

Wytyczne i deklaracje wytwórcy – odporność na zakłócenia				
Urządzenie jest przeznaczone do użytku w środowisku elektromagnetycznym opisanym poniżej. Użytkownik lub odbiorca urządzenia powinien zapewnić odpowiednie warunki środowiskowe.				
Rodzaj zakłócenia	ij Poziom zakłócenia wg cenia IEC60601		Środowisko elektromagnetyczne - wytyczne	
Wyładowania elektrostatyczne (ESD) IEC 61000-4-2	±6kV kontakt ±8kV powietrze	±6kV kontakt / ±8kV powietrze Bez wpływu na działanie	Podłoga powinna być drewniana, betonowa lub z płytek ceramicznych. Jeśli jest pokryta syntetycznym materiałem, to wilgotność względna musi wynosić minimum 30%.	
Serie szybkich elektrycznych stanów przejściowych IEC 61000-4-4	±2kV dla przyłącza zasilania sieciowego ±1kV dla przyłączy wejścia/wyjścia	±2kV zasilanie / ±1kV wejście/wyjście Bez wpływu na działanie	Sieć zasilająca powinna mieć jakość typową dla środowiska szpitalnego lub biurowego.	
Udary IEC 61000-4-5	±1kV tryb różnicowy ±2kV tryb wspólny	±1kV różnicowy / ±2kV wspólny Bez wpływu na działanie	Sieć zasilająca powinna mieć jakość typową dla środowiska szpitalnego lub biurowego.	

Wytyczne i deklaracje wytwórcy – odporność na zakłócenia

Urządzenie jest przeznaczone do użytku w środowisku elektromagnetycznym opisanym poniżej. Użytkownik lub odbiorca urządzenia powinien zapewnić odpowiednie warunki środowiskowe.

Rodzaj zakłócenia	Poziom zakłócenia wg IEC 60601	Podatność	Środowisko elektromagnetyczne - wytyczne
Odporności na zapady napięcia, krótkie przerwy i zmiany napięcia IEC 61000-4-11	<5% UT (>95% zapadu UT dla 0,5 cyklu) 40% UT (60% zapadu UT dla 5 cykli) 70% UT (30% zapadu UT dla 25 cykli) <5% UT (>95% zapadu UT dla 5 sek.)	UT – 100% (0,5 okresu) Bez wpływu na działanie UT – 60% (5 okresów) Bez wpływu na działanie UT – 30% (25 okresów) Bez wpływu na działanie UT – 100% (5 sekund) Następuje reset urządzenia do stanu bezpiecznego	Sieć zasilająca powinna mieć jakość typową dla środowiska szpitalnego lub biurowego. Jeżeli użytkownik urządzenia wymaga ciągłej pracy podczas przerw w napięciu zasilającym, to zalecane jest zasilanie urządzenia ze źródła zabezpieczonego przed zanikami napięcia lub z baterii.
Pole magnetyczne o częstotliwości sieci elektroenergetycznej IEC 61000-4-8	3 A/m	Nie stosuje się	Pole magnetyczne o częstotliwości sieci elektroenergetycznej powinny mieć poziom typowy dla środowiska szpitalnego lub biurowego

Uwaga UT – napięcie zasilające urządzenie

Wytyczne i deklaracj	e wytwórcy – odporn	ość na zakłócenia		
Urządzenia serii 400 jest przeznaczone do użytku w środowisku elektromagnetycznym opisanym poniżej. Użytkownik lub odbiorca urządzenia powinien zapewnić odpowiednie warunki środowiskowe.				
Rodzaj zakłócenia	Poziom zakłócenia wg IEC60601	Podatność	Środowisko elektromagnetyczne - wytyczne	
			Przenośny i ruchomy sprzęt komunikacji radiowej powinien być używany w odległości od urządzenia wraz z jego przewodami, nie mniejszej niż zalecany dystans wyliczony odpowiednio dla częstotliwości nadajnika. Dystans ten wynosi:	
	3 Vrms 150kHz – 80MHz			
Zaburzenia przewodzone, indukowane przez pola o częstotliwości radiowej IEC 61000-4-6		10 V0.15-80 Mhz 51 V6.78 Mhz 54 V13.56 Mhz 50 V27.12 Mhz 45 V40.68 Mhz	$d = 0.35 \sqrt{p} d$ = 0.07 \sqrt{p} \ d = 0.06 \sqrt{p} \ d = 0.07 \sqrt{p} \ d = 0.08 \sqrt{p}	
	3 V/m 80MHz do 2,5GHz			
Pole elektromagnetyczne o częstotliwości radiowej IEC 61000-4-3	3 V/m AM 1 kHz 80% 80 MHz do 2.5 GHz	10 V/m0.08-1.0 Ghz 26 V/m1.4-2.0 Ghz 30 V/m433.92 Mhz 30 V/m915 Mhz	d = 0,35√p 80 MHz to 800 MHz d = 0,70√p 800 MHz to 2,5 GHz d = 0,12√p d = 0,23√p	
			d = 0,23√p	
Pole elektromagnetyczne o częstotliwości radiowej ENV 50204	3 V/m CW 200 Hz d.c. 50% 895 MHz do 905 MHz	30 V/m.895-905 Mhz	gdzie P to maksymalna wartość mocy wyjściowej nadajnika w watach [W] wg wytwórca nadajnika; d – zalecana odległość w metrach [m] Natężenie pola od stacjonarnych nadajników, określone przez pomiary elektromagnetyczne a, powinno być mniejsze niż ustalony poziom dla każdego z zakresów częstotliwości. Interferencje mogą się pojawić w pobliżu sprzętu oznaczonego poniższym	

wytyczne i deklaracje wytworcy – oupornost na zaklotenia
--

Urządzenie jest przeznaczone do użytku w środowisku elektromagnetycznym opisanym poniżej. Użytkownik lub odbiorca urządzenia powinien zapewnić odpowiednie warunki środowiskowe.

Rodzaj	Poziom zakłócenia	Podatność	Środowisko elektromagnetyczne -
zakłócenia	wg IEC 60601		wytyczne

Uwaga 1 Przy 80MHZ i 800MHz stosować wyższy zakres częstotliwości. Uwaga 2 Wytyczne mogą nie mieć zastosowania we wszystkich sytuacjach. Na propagację fal elektromagnetycznych wywierają wpływ odbicia od struktur, obiektów i ludzi.

Natężenie pola od stacjonarnych nadajników, takich jak stacje bazowe telefonii komórkowej, nadajniki radioamatorów, stacji radiowych i telewizyjnych, nie może być teoretycznie wyliczone. Aby ocenić natężenie pola elektromagnetycznego od stacjonarnych nadajników, należy przeprowadzić pomiary elektromagnetyczne. Jeżeli zmierzone natężenie pola elektromagnetycznego w miejscu umieszczenia urządzenia przekroczy ustalony poziom, to należy

obserwować zachowanie się urządzenia. Jeżeli zostanie zauważona nieprawidłowa praca urządzenia, to mogą okazać się konieczne dodatkowe pomiary oraz przesunięcie lub przeniesienie urządzenia. b Dla zakresu częstotliwości 150 kHz – 80 MHz natężenie pola musi być mniejsze niż V1 [V/m]

Zalecany dystans pomiędzy przenośnym i ruchomym sprzętem komunikacji radiowej a urządzeniem

Urządzenie jest przeznaczone do użytku w środowisku elektromagnetycznym, w którym kontrolowane są promieniowane zakłócenia radiowe. Użytkownik lub odbiorca urządzenia może pomóc w zapobieganiu interferencją elektromagnetycznym poprzez zapewnienie minimalnej odległości pomiędzy przenośnym i ruchomym sprzętem komunikacji radiowej a urządzeniem serii 400, tak jak jest to polecane poniżej, odnosząc się do maksymalnej mocy wyjściowej nadajnika.

Maksymalna moc wyjściowa nadajnika	Dystans odnoszący się do częstotliwości nadajnika [m]					
[W]	150 kHz to 80 MHz <i>d</i> = $0.35 \sqrt{p}$	80 MHz to 800 MHz <i>d</i> = $0.35\sqrt{p}$	800 MHz to 2.5 GHz $d = 0.70 \sqrt{p}$			
0.01	0.04	0.04	0.07			
0.1	0.11	0.11	0.22			
1	0.35	0.35	0.70			
10	1.11	1.11	2.21			
100	3.50	3.50	7.00			

Dla nadajników pracujących z maksymalną mocą wyjściową, która nie jest wymieniona powyżej, zalecany dystans d w metrach [m] może być oszacowany używając równania odpowiedniego dla częstotliwości nadajnika, gdzie P – maksymalna moc wyjściowa nadajnika w watach [W]. Uwaga 1 Przy 80MHZ i 800MHz stosować wyższy zakres częstotliwości. Uwaga 2 Wytyczne mogą nie mieć zastosowania we wszystkich sytuacjach. Na propagację fal elektromagnetycznych wywierają wpływ odbicia od struktur, obiektów i ludzi.

8.5 Techniczne badanie bezpieczeństwa

Aparat serii 400 o następującym numerze seryjnym jest / nie jest* sprawny							
Badanie przeprowadził: Właściciel:							
Miejscowość:	lmię i nazwisko:	lmię i nazwisko:					
Data:	Podpis:	Podpis:					

*Niepotrzebne skreślić.

Jeśli określony test nie ma zastosowania przy danym sprzęcie, wówczas należy zaznaczyć kwadrat w kolumnie NA (not applicable – nie stosuje się).

8.5.1 Test 1: Ogólny

		Tak	Nie	NA
1.	Wyniki wcześniejszych badań bezpieczeństwa są dostępne.			
2.	Dziennik aparatu istnieje.			
3.	Tabliczka znamionowa oraz etykieta wytwórcy są czytelne.			
4.	Obudowa, pokrętła regulacji, przyciski oraz ekran są nieuszkodzone			
5.	Gniazdo zasilające oraz przewód zasilania są nieuszkodzone.			
6.	Gniazda podłączeniowe są nieuszkodzone.			
7.	Złączki elektrod i kable elektrod są nieuszkodzone.			
8.	Kable oraz wtyczka głowic(y) ultradźwiękowych są nieuszkodzone.			
9.	Głowice(a) ultradźwiękowe nie sygnalizują żadnych pęknięć ani innych			
	uszkodzeń, które mogłyby zagrażać izolacji.			_
10.	Automatyczne testowanie aparatu po jego włączeniu nie pokazuje			
	żadnej wiadomości o błędzie.			
11.	Wyświetlacz nie pokazuje żadnych uszkodzonych punktów ani linii.			

8.5.2 Test 2: Elektroterapia

		Tak	Nie
1.	Podłączyć opór 500 Ω do obu par elektrod. Podłączyć oscyloskop do w/w par (czarny d	0
	uziemienia).		
2.	Wybrać kanał A, program 4: MF stałą.		
3.	Przy maksymalnym natężeniu, wartość prądu odpowiada około 10%		
	wartości na wyświetlaczu.		
4.	Sygnał na oscyloskopie odpowiada sygnałowi na rycinie 1.		
5.	Polaryzacja zmieni się na ujemną, jeśli wybrany zostanie "CZER (-)".		
6.	Jeśli opór zostanie odłączony, pojawi się ostrzeżenie "Zły kontakt z		\square
	pacjentem".		
7.	Wybrać kanał B, program 4: MF stałą. Wybrać CC.		
8.	Przy maksymalnym natężeniu, wartość prądu odpowiada około 10%		
	wartości na wyświetlaczu.		
9.	Sygnał na oscyloskopie odpowiada sygnałowi na rycinie 1.		\square
10.	Polaryzacja zmieni się na ujemną, jeśli wybrany zostanie "CZER (-)"		
11.	Jeśli opór zostanie odłączony, pojawi się ostrzeżenie "Zły kontakt z		
	pacjentem".		
12.	Usunąć opór tak, aby można było zmierzyć nieobciążoną wartość wyjściową		
	napięcia.		
13.	Wybrać kanał A, prąd interferencyjny: 2-biegunową średnią częstotliwość.		
	CV.		
14.	Przy maksymalnej intensywności, wartość napięcia odpowiada około 10 %		
	wartości na wyświetlaczu.		
15.	Sygnał na oscyloskopie odpowiada sygnałowi na rycinach 2 i 3.		
16.	Wybrać kanał B, prąd interferencyjny: 2-biegunową średnią częstotliwość.		
	CV.		\square
17.	Przy maksymalnej intensywności, wartość napięcia odpowiada około 10 %		
	wartości na wyświetlaczu.		
18.	Sygnał na oscyloskopie odpowiada sygnałowi na rycinach 2 i 3.		
19.	Wybierz kanał A, Mikroprądy, ciągłe		
20.	Przy maksymalnej intensywności, wartość napięcia odpowiada około 10 %		
	wartości na wyświetlaczu.		
21.	Sygnał na oscyloskopie odpowiada sygnałowi na rycinie 4.		
22.	Wybierz kanał B, Mikroprądy, ciągłe		
23.	Przy maksymalnej intensywności, wartość napięcia odpowiada około 10 % wa	rtości na	
	wyświetlaczu.		
24.	Sygnał na oscyloskopie odpowiada sygnałowi na rycinie 4.		

Rycina 2

Rycina 3

Rycina 4

	A1: 200	mV		<u>Tb: 5</u> m	s				
induludi				Autoritien		Secold Hell		daminin	
Misingan		puturdulah)		ontempolis	- - -			MANA	
	cover a state of the	and support	a alternation to	A. M. FRANK		- Parter -			to an of a minimized
•1+-+-+	production of the		ar an Andrew Process			<u> </u>	na karayan yang hayan		
					-				

8.5.3 Test 3: Ultradźwięki

		Tak	Nie
1.	Podłączyć głowicę zabiegową i umieścić ją w urządzeniu do pomiaru ultradźwiękć	ów.	
	Wcisnąć przycisk aby wybrać ultradźwięki.		
2.	Wybrać 1 MHz, tryb pracy ciągły (współczynnik wypełnienia 100%), 2 W/cm ² .		
	Zmierzona wartość jest w granicach ±20% wartości Ppk w oknie kanału.		
3.	Wybrać 1 MHz, współczynnik wypełnienia 50%, 3 W/cm². Zmierzona wartość		
	jest w granicach ±20% połowy wartości Ppk w oknie kanału.	_	_
4.	Wybrać 3 MHz, tryb pracy ciągły (współczynnik wypełnienia 100%), 2 W/cm ² .		
	Zmierzona wartość jest w granicach $\pm 20\%$ wartości Ppk w oknie kanału.		
5.	Wybrać 3 MHz, współczynnik wypełnienia 50%, 3 W/cm². Zmierzona wartość		
	jest w granicach ±20% połowy wartości Ppk w oknie kanału.		
6.	Wybrać 3 MHz, współczynnik wypełnienia 50%, 0.5 W/cm² Przy suchej		
	powierzchni zabiegowej wartość Ppk wynosi 0.		
7.	Wybrać 1 MHz, współczynnik wypełnienia 50%, 0.5 W/cm² Przy suchej		
	powierzchni zabiegowej wartość Ppk wynosi 0.		

Maksymalny transfer mocy ma miejsce przy częstotliwościach roboczych. Jeśli urządzenie nie pracuje na odpowiedniej częstotliwości, wówczas moc wyjściowa jest zbyt niska. Dlatego nie jest konieczne sprawdzanie wartości częstotliwości roboczych.

8.5.4 Test 4: Laseroterapia

Uwaga:

Rozpocznij laseroterapię, tylko wtedy, gdy wszystkie osoby obecne w pokoju mają założone okulary ochronne.

Do testu A i B należy użyć odpowiedniego urządzenia do pomiaru promieniowania o następujących specyfikacjach:

- Rozdzielczość zmierzonej energii na wartość impulsu wynosi: ≤ 0,1 μJ
- Zakres długości fal wynosi: 880–930 nm.
- Zdolność do pomiaru: 200 ns impulsów 30 Wpk.
- Zdolny do wychwytywania rozbieżnej wiązki o średnicy: ≥ 10 mm.
- Tolerancja: ≤ 10%.

Test A: Monoprobe

		Tak	Nie
1.	Podłącz sondę do urządzenia serii 400.		
2.	Wybierz laseroterapię, a zapali się zielona lampka kontrolna.		
3.	Naciśnij czarne pokrętło na sondzie laserowej. Żółta kontrolka zaświeci się, zielona		
	kontrolka natomiast, zgaśnie.		
4.	Zwolnij czarne pokrętło. Zielona lampka sygnalizacyjna zaświeci się, a żółta lampka		
	kontrolna zgaśnie.		
5.	Rozpocznij laseroterapię, aby zmierzyć wartość Ep za pomocą urządzenia		
	do pomiaru.		
	Zmierzona wartość Ep wynosiµJ.		

6. Zmierzona wartość Ep odpowiada ± 20% wartości Ep protokołu testowego sondy laserowej.

Seria 400

Test B: Clusterprobe				
1.	Podłącz sondę do urządzenia serii 400.			
2.	Wybierz laseroterapię, a zapali się zielona lampka kontrolna.			
3.	Naciśnij czarne pokrętło na sondzie laserowej. Żółta kontrolka zaświeci się, zielona			
	kontrolka natomiast, zgaśnie.			
4.	Zwolnij czarne pokrętło. Zielona lampka sygnalizacyjna zaświeci się, a żółta lampka			
	kontrolna zgaśnie.			
5.	Rozpocznij laseroterapię, aby zmierzyć wartość Ep za pomocą urządzenia do pomiaru.			
	Zmierzona wartość Ep na pierwszej diodzie laserowej wynosi µJ.			
	Zmierzona wartość Ep na drugiej diodzie laserowej wynosiµJ.			
	Zmierzona wartość Ep na trzeciej diodzie laserowej wynosiµJ.			
	Zmierzona wartość Ep na czwartej diodzie laserowej wynosiµJ.			
	Suma zmierzonych wartości E_p wynosiµJ.			
6.	Suma zmierzonych wartość Ep odpowiada \pm 20% wartości Ep protokołu testowego			
	sondy laserowej.			

Test C: Kalibracja

Tak Nie

- 1. Podłącz skalibrowaną sondę do urządzenia serii 400.
- 2. Wybierz *Pomiar mocy lasera* w ustawieniach systemu.
- Umieść wyjście sondy laserowej prostopadle na oku testowym lasera^{*} Rozpocznij pomiar mocy lasera. Delikatnie przesuwaj sondę, aby uzyskać maksymalną wartość pomiaru. Zmierzona wartość Ep wynosiµJ. Zatrzymaj pomiar.
- Suma zmierzonych wartość Ep odpowiada ± 5% wartości Ep skalibrowanej sondy laserowej.
- 5. Jeśli jest inaczej, skontaktuj się z lokalnym serwisem dostawcy.

8.5.5 Test 5: Test bezpieczeństwa elektrycznego (IEC 62353)

		Tak	Nie
1.	Oporność uziemienia ochronnego jest mniejsza niż 0.2 Ω		
2.	Prąd upływu obudowy jest mniejszy niż 1000 μA		
3.	Prąd upływu pacjenta jest mniejszy niż 5000 μA		
Uwa	gi:		

8.5.6 Ewidencja narzędzi pomiarowych

Pomiar	Nazwa urządzenia	Numer seryjny/numer identyfikacyjny	Termin kalibracji
Test bezpieczeństwa			
Elektroterapia			
Moc ultradźwięków			
Moc lasera			

8.6 Utylizacja

W przypadku utylizacji aparatu i jego akcesoriów należy wziąć pod uwagę następujące aspekty środowiskowe:

- Aparat, kable i elektrody uznawane są za drobne odpady chemiczne (lub odpady elektroniczne).
 Zawierają ołów, cynę, miedź, żelazo, różne inne metale oraz tworzywa sztuczne. Należy postępować zgodnie z rozporządzeniami danego kraju.
- Podkłady i żele zawierają jedynie materiały organiczne i nie wymagają specjalnego przetwarzania.
- Opakowania oraz instrukcje mogą być przetwarzane. Należy je dostarczyć do odpowiednich punktów skupu lub wyrzucić na śmietnik. Zależy to od przepisów lokalnych.

Powiadom sprzedawcę o utylizacji urządzenia.

9. Wyjaśnienia

9.1 Literatura

Na prośbę zainteresowanych spis literatury może zostać wysłany pocztą. W tym celu należy skontaktować się bezpośrednio z GymnaUniphy.

9.2 Terminologia

Absolutna siła mięśniowa: maksymalne całkowite napięcie, jakie może stworzyć mięsień.

Akomodacja: zdolność tkanki nerwowej do samoochrony przed pobudzeniem, którego siła wolno narasta. Tabela poniżej pokazuje zdolność akomodacji dobrze unerwionego mięśnia:

Czas impulsu	Opóźnienie reakcji, impuls prostokątny: impuls trójkątny	Współczynnik akomodacji
500 ms	1:1.5 do 1:3	1.5 - 4
1000 ms	1:2 do 1:6	2 - 6

Aktywny punkt spustowy: punkt, który w wyniku stymulacji (poprzez ucisk, rozciąganie lub impuls elektryczny), prócz bólu lokalnego, daje także ból rzutowany w miejscu, na które skarży się pacjent

Antalgia: Redukcja bólu.

Atrofia: Zaburzenie stanu odżywiania organów. W wyniku takich zaburzeń organy stają się mniejsze i kurczą się.

Chronaksja: próg pobudliwości tkankowej. Wyraża się najkrótszym czasem trwania bodźca, jaki potrzebny jest do wywołania skurczu mięśniowego lub wrażenia czuciowego.

Elektrostymulacja układu nerwowo-mięśniowego (NMES – Neuro Muscular Electro Stimulation): skurcz unerwionego mięśnia lub grupy mięśni poprzez zastosowanie elektrostymulacji prądem małej lub średniej częstotliwości. Celem tej stymulacji jest poprawa bądź utrzymanie funkcji tego mięśnia.

Epitelizacja: regeneracja nabłonka nad dnem rany. Epitelizację może stymulować prąd jednokierunkowy. Może ona być również aktywowana poprzez zewnętrzną stymulację elektryczną.

Inerwacja: efekt oddziaływania nerwów na pracę mięśni lub gruczołów.

Jonoforeza: przepływ jonów przez tkanki uruchomiony za pomocą prądu galwanicznego lub prostokątnego prądu średniej częstotliwości.

Mięśniowo-powięziowy punkt spustowy: punkt spustowy, który zlokalizowany jest w tkance mięśniowo-powięziowej. Punkt ten zlokalizowany jest w obrębie napiętej taśmy mięśnia szkieletowego lub powięzi tego mięśnia. Mięśniowo-powięziowe punkty spustowe można znaleźć poprzez Punkty bólowe w Programach diagnostycznych.

Odnerwienie: całkowite wyłączenie lub osłabienie unerwienia (porażenie).

Prąd uszkodzenia: mały prąd jednokierunkowy pomiędzy naskórkiem a skórą właściwą, który pojawia się po uszkodzeniu skóry (zranieniu). Prąd ten aktywuje procesy gojenia. W przypadkach opóźnionego gojenia ran, aplikacja zewnętrznego prądu jednokierunkowego będzie wzmagać te procesy.

Próg bólu: najniższy poziom bodźca, który wywołuje ból.

Próg tolerancji bólu: poziom bodźca (stymulacji), który tolerowany jest przez pacjenta. Próg tolerancji bólu występuje po progu bólu.

Przeczulica bólowa: wzrost wrażliwości na ból. W przypadku ostrej przeczulicy bólowej należy stosować zmodyfikowane dawkowanie.

Reinerwacja: powrót unerwienia.

Reobaza: minimalna wartość prądu stałego podczas stymulacji nerwu wywołująca skurcz mięśniowy.

Siła eksplozywna mięśnia: największe napięcie, jakie może stworzyć mięsień w możliwie najkrótszym czasie.

Skleroliza: zmiękczanie tkanek. Tkanki mogą zostać zmiękczone chemicznie i elektrycznie z użyciem katody oraz chloru lub jodu.

Skurcz izometryczny: skurcz mięśnia, podczas którego jego długość pozostaje stała. Opór zewnętrzny skierowany na mięsień musi być przynajmniej tak duży jak siła wywołana przez ten skurcz. W warunkach skurczu izometrycznego, napięcie mięśnia wzrasta a skrócenie mięśnia nie jest możliwe.

128

Seria 400

Skurcz tężcowy: stały skurcz mięśniowy bazujący na kilku falach skurczów występujących jednocześnie w mięśniu. Skurcze tężcowe mogą być wyzwalane w przypadku zastosowania stymulacji NMES. Spadek tonusu mięśniowego: stan, w którym napięcie mięśniowe ulega zmniejszeniu.

Tonus: stan napięcia tkanek.

Trofika: stan odżywienia.

Uszkodzenie skóry: reakcje elektrochemiczne, które mogą być zagrożeniem dla tkanek i organów, a zwłaszcza dla skóry. Prawidłowo przeprowadzony zabieg wywoła pożądany efekt np. przekrwienie. Uszkodzenie skóry może powstać, jeśli zastosowany zostanie prąd z dużą komponentą galwaniczną.

Włókna mięśniowe I typu: włókna mięśniowe o małej szybkości skurczu.

Włókna mięśniowe II typu: włókna mięśniowe o dużej szybkości skurczu. W stymulacji NMES należy zastosować następujące parametry

Parametry NMES	Тур I	Тур II
Czas impulsu	Długi	Krótki
Częstotliwość impulsów	Niska	Wysoka
Amplituda impulsu	-	Wysoka
Czas trwania serii i przerwy	Krótki	Długi
Czas zabiegu	Długi	-

Włókna mięśniowe wolnokurczliwe: włókna mięśniowe, których szybkość skurczu jest mała. Są to cienkie włókna, które wyzwalają małą siłę i mają niski poziom zmęczenia. Zobacz także włókna mięśniowe l typu.

Wrażliwość: poziom, na którym tkanki lub organy reagują na stymulację. Przy wysokiej wrażliwości pożądana jest łagodna stymulacja, natomiast przy niskiej wrażliwości – bardziej intensywna. Należy właściwie ocenić wrażliwość, aby dobrać odpowiednią intensywność stymulacji.

Wynik VAS: Wynik na Wizualnej Skali Bólu (VAS). Narzędzie służące klinicznej ocenie dolegliwości zgłaszanych przez pacjenta. Dotyczy zazwyczaj stopnia odczuwania bólu. Dla wysokich wyników VAS najlepsze jest łagodne oddziaływanie, natomiast dla wysokich wyników VAS – bardziej intensywne.

Wytrzymałość: zdolność do częstego powtarzania skurczów mięśniowych.

Seria 400

Gymna

Pasweg 6A B-3740 Bilzen

Tel.: (+32) (0) 89/510.532 Fax: (+32) (0) 89/510.541

www.gymna.com info@gymna.com

Sprzedawca: